Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Edet
1
60 kgLastra
2
64 kgMadrazo
3
61 kgVillella
4
66 kgCataldo
5
64 kgDenifl
6
65 kgWyss
7
63 kgLanda
8
61 kgContador
9
61 kgDe Plus
10
67 kgKelderman
11
65 kgYates
12
58 kgMaté
13
68 kgVerona
14
68 kgHenao
15
61 kgMoreno
16
59 kgBakelants
17
67 kgMontaguti
18
65 kgSánchez
19
65 kgPauwels
20
65 kgBrambilla
21
57 kgDupont
22
57 kgTxurruka
23
58 kg
1
60 kgLastra
2
64 kgMadrazo
3
61 kgVillella
4
66 kgCataldo
5
64 kgDenifl
6
65 kgWyss
7
63 kgLanda
8
61 kgContador
9
61 kgDe Plus
10
67 kgKelderman
11
65 kgYates
12
58 kgMaté
13
68 kgVerona
14
68 kgHenao
15
61 kgMoreno
16
59 kgBakelants
17
67 kgMontaguti
18
65 kgSánchez
19
65 kgPauwels
20
65 kgBrambilla
21
57 kgDupont
22
57 kgTxurruka
23
58 kg
Weight (KG) →
Result →
68
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | EDET Nicolas | 60 |
2 | LASTRA Jonathan | 64 |
3 | MADRAZO Ángel | 61 |
4 | VILLELLA Davide | 66 |
5 | CATALDO Dario | 64 |
6 | DENIFL Stefan | 65 |
7 | WYSS Marcel | 63 |
8 | LANDA Mikel | 61 |
9 | CONTADOR Alberto | 61 |
10 | DE PLUS Laurens | 67 |
11 | KELDERMAN Wilco | 65 |
12 | YATES Simon | 58 |
13 | MATÉ Luis Ángel | 68 |
14 | VERONA Carlos | 68 |
15 | HENAO Sergio | 61 |
16 | MORENO Daniel | 59 |
17 | BAKELANTS Jan | 67 |
18 | MONTAGUTI Matteo | 65 |
19 | SÁNCHEZ Samuel | 65 |
20 | PAUWELS Serge | 65 |
21 | BRAMBILLA Gianluca | 57 |
22 | DUPONT Hubert | 57 |
23 | TXURRUKA Amets | 58 |