Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Alaphilippe
1
62 kgRoglič
2
65 kgBilbao
3
60 kgMas
4
61 kgIzagirre
5
66 kgBuchmann
6
59 kgKonrad
7
64 kgVanendert
8
62 kgBardet
9
65 kgGonzález Prieto
10
69 kgQuintana
11
58 kgMolard
12
62 kgUrán
13
63 kgMollema
14
64 kgCataldo
15
64 kgDe Gendt
16
73 kgLanda
17
61 kgPrades
18
63 kg
1
62 kgRoglič
2
65 kgBilbao
3
60 kgMas
4
61 kgIzagirre
5
66 kgBuchmann
6
59 kgKonrad
7
64 kgVanendert
8
62 kgBardet
9
65 kgGonzález Prieto
10
69 kgQuintana
11
58 kgMolard
12
62 kgUrán
13
63 kgMollema
14
64 kgCataldo
15
64 kgDe Gendt
16
73 kgLanda
17
61 kgPrades
18
63 kg
Weight (KG) →
Result →
73
58
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | ALAPHILIPPE Julian | 62 |
2 | ROGLIČ Primož | 65 |
3 | BILBAO Pello | 60 |
4 | MAS Enric | 61 |
5 | IZAGIRRE Gorka | 66 |
6 | BUCHMANN Emanuel | 59 |
7 | KONRAD Patrick | 64 |
8 | VANENDERT Jelle | 62 |
9 | BARDET Romain | 65 |
10 | GONZÁLEZ PRIETO Aitor | 69 |
11 | QUINTANA Nairo | 58 |
12 | MOLARD Rudy | 62 |
13 | URÁN Rigoberto | 63 |
14 | MOLLEMA Bauke | 64 |
15 | CATALDO Dario | 64 |
16 | DE GENDT Thomas | 73 |
17 | LANDA Mikel | 61 |
18 | PRADES Eduard | 63 |