Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Gendt
1
73 kgPadun
2
67 kgLastra
3
64 kgVuillermoz
4
60 kgAlaphilippe
5
62 kgLópez
6
68 kgIzagirre
7
66 kgRoglič
8
65 kgVerona
9
68 kgGhebreigzabhier
10
68 kgGuerreiro
11
65 kgJuul-Jensen
12
73 kgSivakov
13
70 kgBuchmann
14
59 kgLanda
15
61 kgWoods
16
62 kgKwiatkowski
18
68 kgKing
19
68 kgMas
20
61 kgMühlberger
21
64 kgGonzález Prieto
22
69 kg
1
73 kgPadun
2
67 kgLastra
3
64 kgVuillermoz
4
60 kgAlaphilippe
5
62 kgLópez
6
68 kgIzagirre
7
66 kgRoglič
8
65 kgVerona
9
68 kgGhebreigzabhier
10
68 kgGuerreiro
11
65 kgJuul-Jensen
12
73 kgSivakov
13
70 kgBuchmann
14
59 kgLanda
15
61 kgWoods
16
62 kgKwiatkowski
18
68 kgKing
19
68 kgMas
20
61 kgMühlberger
21
64 kgGonzález Prieto
22
69 kg
Weight (KG) →
Result →
73
59
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
2 | PADUN Mark | 67 |
3 | LASTRA Jonathan | 64 |
4 | VUILLERMOZ Alexis | 60 |
5 | ALAPHILIPPE Julian | 62 |
6 | LÓPEZ David | 68 |
7 | IZAGIRRE Gorka | 66 |
8 | ROGLIČ Primož | 65 |
9 | VERONA Carlos | 68 |
10 | GHEBREIGZABHIER Amanuel | 68 |
11 | GUERREIRO Ruben | 65 |
12 | JUUL-JENSEN Christopher | 73 |
13 | SIVAKOV Pavel | 70 |
14 | BUCHMANN Emanuel | 59 |
15 | LANDA Mikel | 61 |
16 | WOODS Michael | 62 |
18 | KWIATKOWSKI Michał | 68 |
19 | KING Ben | 68 |
20 | MAS Enric | 61 |
21 | MÜHLBERGER Gregor | 64 |
22 | GONZÁLEZ PRIETO Aitor | 69 |