Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Schachmann
1
71 kgAlaphilippe
2
62 kgKwiatkowski
3
68 kgIzagirre
4
60 kgMartínez
5
63 kgLambrecht
6
56 kgKonrad
7
64 kgFraile
8
72 kgMas
9
61 kgMadouas
10
71 kgYates
11
58 kgTeuns
12
64 kgThomas
13
71 kgPogačar
14
66 kgCarthy
15
69 kgSerry
16
66 kgFuglsang
17
67 kgBilbao
18
60 kgMartin
19
59 kgCraddock
20
69 kgHonoré
21
68 kgLutsenko
22
74 kgBuchmann
23
59 kgVerona
24
68 kg
1
71 kgAlaphilippe
2
62 kgKwiatkowski
3
68 kgIzagirre
4
60 kgMartínez
5
63 kgLambrecht
6
56 kgKonrad
7
64 kgFraile
8
72 kgMas
9
61 kgMadouas
10
71 kgYates
11
58 kgTeuns
12
64 kgThomas
13
71 kgPogačar
14
66 kgCarthy
15
69 kgSerry
16
66 kgFuglsang
17
67 kgBilbao
18
60 kgMartin
19
59 kgCraddock
20
69 kgHonoré
21
68 kgLutsenko
22
74 kgBuchmann
23
59 kgVerona
24
68 kg
Weight (KG) →
Result →
74
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | SCHACHMANN Maximilian | 71 |
2 | ALAPHILIPPE Julian | 62 |
3 | KWIATKOWSKI Michał | 68 |
4 | IZAGIRRE Ion | 60 |
5 | MARTÍNEZ Daniel Felipe | 63 |
6 | LAMBRECHT Bjorg | 56 |
7 | KONRAD Patrick | 64 |
8 | FRAILE Omar | 72 |
9 | MAS Enric | 61 |
10 | MADOUAS Valentin | 71 |
11 | YATES Adam | 58 |
12 | TEUNS Dylan | 64 |
13 | THOMAS Geraint | 71 |
14 | POGAČAR Tadej | 66 |
15 | CARTHY Hugh | 69 |
16 | SERRY Pieter | 66 |
17 | FUGLSANG Jakob | 67 |
18 | BILBAO Pello | 60 |
19 | MARTIN Dan | 59 |
20 | CRADDOCK Lawson | 69 |
21 | HONORÉ Mikkel Frølich | 68 |
22 | LUTSENKO Alexey | 74 |
23 | BUCHMANN Emanuel | 59 |
24 | VERONA Carlos | 68 |