Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Pogačar
1
66 kgHermans
2
62 kgRoglič
3
65 kgSchachmann
4
71 kgLazkano
5
74 kgYates
6
58 kgValverde
7
61 kgVerona
8
68 kgIrisarri
9
66 kgMcNulty
10
69 kgLanda
11
61 kgHiguita
12
57 kgBevin
13
75 kgHerrada
14
70 kgHonoré
15
68 kgGaudu
16
53 kgLópez
17
60 kgWoods
18
62 kgWarbasse
19
67 kgCabedo
20
53 kgVermaerke
21
67 kg
1
66 kgHermans
2
62 kgRoglič
3
65 kgSchachmann
4
71 kgLazkano
5
74 kgYates
6
58 kgValverde
7
61 kgVerona
8
68 kgIrisarri
9
66 kgMcNulty
10
69 kgLanda
11
61 kgHiguita
12
57 kgBevin
13
75 kgHerrada
14
70 kgHonoré
15
68 kgGaudu
16
53 kgLópez
17
60 kgWoods
18
62 kgWarbasse
19
67 kgCabedo
20
53 kgVermaerke
21
67 kg
Weight (KG) →
Result →
75
53
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | POGAČAR Tadej | 66 |
2 | HERMANS Quinten | 62 |
3 | ROGLIČ Primož | 65 |
4 | SCHACHMANN Maximilian | 71 |
5 | LAZKANO Oier | 74 |
6 | YATES Adam | 58 |
7 | VALVERDE Alejandro | 61 |
8 | VERONA Carlos | 68 |
9 | IRISARRI Jon | 66 |
10 | MCNULTY Brandon | 69 |
11 | LANDA Mikel | 61 |
12 | HIGUITA Sergio | 57 |
13 | BEVIN Patrick | 75 |
14 | HERRADA Jesús | 70 |
15 | HONORÉ Mikkel Frølich | 68 |
16 | GAUDU David | 53 |
17 | LÓPEZ Juan Pedro | 60 |
18 | WOODS Michael | 62 |
19 | WARBASSE Larry | 67 |
20 | CABEDO Óscar | 53 |
21 | VERMAERKE Kevin | 67 |