Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 12
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Rodríguez
1
59 kgRuiz
2
65 kgOkamika
3
70 kgThomas
4
71 kgLafay
5
65 kgPolanc
6
62 kgArmirail
7
72 kgFormolo
8
62 kgEvenepoel
9
63 kgVingegaard
10
58 kgYates
11
58 kgGuerreiro
12
65 kgHoule
14
72 kgRodríguez
15
63 kgRoglič
16
65 kgAmezqueta
17
63 kgMas
18
61 kgGeoghegan Hart
19
65 kgIturria
20
69 kg
1
59 kgRuiz
2
65 kgOkamika
3
70 kgThomas
4
71 kgLafay
5
65 kgPolanc
6
62 kgArmirail
7
72 kgFormolo
8
62 kgEvenepoel
9
63 kgVingegaard
10
58 kgYates
11
58 kgGuerreiro
12
65 kgHoule
14
72 kgRodríguez
15
63 kgRoglič
16
65 kgAmezqueta
17
63 kgMas
18
61 kgGeoghegan Hart
19
65 kgIturria
20
69 kg
Weight (KG) →
Result →
72
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | RODRÍGUEZ Cristián | 59 |
2 | RUIZ Ibon | 65 |
3 | OKAMIKA Ander | 70 |
4 | THOMAS Geraint | 71 |
5 | LAFAY Victor | 65 |
6 | POLANC Jan | 62 |
7 | ARMIRAIL Bruno | 72 |
8 | FORMOLO Davide | 62 |
9 | EVENEPOEL Remco | 63 |
10 | VINGEGAARD Jonas | 58 |
11 | YATES Adam | 58 |
12 | GUERREIRO Ruben | 65 |
14 | HOULE Hugo | 72 |
15 | RODRÍGUEZ Óscar | 63 |
16 | ROGLIČ Primož | 65 |
17 | AMEZQUETA Julen | 63 |
18 | MAS Enric | 61 |
19 | GEOGHEGAN HART Tao | 65 |
20 | ITURRIA Mikel | 69 |