Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Rodríguez
1
59 kgFormolo
2
62 kgVingegaard
3
58 kgMartínez
4
63 kgRuiz
5
65 kgSoler
6
68 kgRodríguez
7
67 kgThomas
8
71 kgGallopin
9
69 kgIzagirre
10
60 kgVlasov
11
68 kgEvenepoel
12
61 kgMas
13
61 kgArmirail
14
72 kgHoule
15
72 kgBilbao
16
60 kgGuerreiro
17
65 kgRodríguez
18
63 kgRoglič
19
65 kgGeoghegan Hart
20
65 kg
1
59 kgFormolo
2
62 kgVingegaard
3
58 kgMartínez
4
63 kgRuiz
5
65 kgSoler
6
68 kgRodríguez
7
67 kgThomas
8
71 kgGallopin
9
69 kgIzagirre
10
60 kgVlasov
11
68 kgEvenepoel
12
61 kgMas
13
61 kgArmirail
14
72 kgHoule
15
72 kgBilbao
16
60 kgGuerreiro
17
65 kgRodríguez
18
63 kgRoglič
19
65 kgGeoghegan Hart
20
65 kg
Weight (KG) →
Result →
72
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | RODRÍGUEZ Cristián | 59 |
2 | FORMOLO Davide | 62 |
3 | VINGEGAARD Jonas | 58 |
4 | MARTÍNEZ Daniel Felipe | 63 |
5 | RUIZ Ibon | 65 |
6 | SOLER Marc | 68 |
7 | RODRÍGUEZ Carlos | 67 |
8 | THOMAS Geraint | 71 |
9 | GALLOPIN Tony | 69 |
10 | IZAGIRRE Ion | 60 |
11 | VLASOV Aleksandr | 68 |
12 | EVENEPOEL Remco | 61 |
13 | MAS Enric | 61 |
14 | ARMIRAIL Bruno | 72 |
15 | HOULE Hugo | 72 |
16 | BILBAO Pello | 60 |
17 | GUERREIRO Ruben | 65 |
18 | RODRÍGUEZ Óscar | 63 |
19 | ROGLIČ Primož | 65 |
20 | GEOGHEGAN HART Tao | 65 |