Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Barrenetxea
1
74 kgZimmermann
3
70 kgCavagna
4
78 kgLatour
5
66 kgJuaristi
6
67.5 kgVingegaard
7
58 kgLanda
8
61 kgRodríguez
9
59 kgMollema
10
64 kgVanhoucke
11
65 kgGeschke
12
64 kgGaudu
13
53 kgMas
14
61 kgChaves
15
55 kgKnox
16
58 kgAranburu
17
63 kgHuys
18
61 kgEiking
19
75 kgRuiz
20
65 kg
1
74 kgZimmermann
3
70 kgCavagna
4
78 kgLatour
5
66 kgJuaristi
6
67.5 kgVingegaard
7
58 kgLanda
8
61 kgRodríguez
9
59 kgMollema
10
64 kgVanhoucke
11
65 kgGeschke
12
64 kgGaudu
13
53 kgMas
14
61 kgChaves
15
55 kgKnox
16
58 kgAranburu
17
63 kgHuys
18
61 kgEiking
19
75 kgRuiz
20
65 kg
Weight (KG) →
Result →
78
53
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BARRENETXEA Jon | 74 |
3 | ZIMMERMANN Georg | 70 |
4 | CAVAGNA Rémi | 78 |
5 | LATOUR Pierre | 66 |
6 | JUARISTI Txomin | 67.5 |
7 | VINGEGAARD Jonas | 58 |
8 | LANDA Mikel | 61 |
9 | RODRÍGUEZ Cristián | 59 |
10 | MOLLEMA Bauke | 64 |
11 | VANHOUCKE Harm | 65 |
12 | GESCHKE Simon | 64 |
13 | GAUDU David | 53 |
14 | MAS Enric | 61 |
15 | CHAVES Esteban | 55 |
16 | KNOX James | 58 |
17 | ARANBURU Alex | 63 |
18 | HUYS Laurens | 61 |
19 | EIKING Odd Christian | 75 |
20 | RUIZ Ibon | 65 |