Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Vollering
1
57 kgCavalli
2
53 kgRooijakkers
3
58 kgLippert
4
56 kgFaulkner
6
62 kgLabous
7
54 kgBaril
8
56 kgMackaij
9
57 kgChabbey
12
52 kgBrand
14
57 kgKorevaar
18
59 kgSpratt
20
55 kgAmialiusik
21
53 kgDoebel-Hickok
22
51 kgErić
23
53 kgGutiérrez
24
60 kgPaladin
27
59 kgGuderzo
29
54 kg
1
57 kgCavalli
2
53 kgRooijakkers
3
58 kgLippert
4
56 kgFaulkner
6
62 kgLabous
7
54 kgBaril
8
56 kgMackaij
9
57 kgChabbey
12
52 kgBrand
14
57 kgKorevaar
18
59 kgSpratt
20
55 kgAmialiusik
21
53 kgDoebel-Hickok
22
51 kgErić
23
53 kgGutiérrez
24
60 kgPaladin
27
59 kgGuderzo
29
54 kg
Weight (KG) →
Result →
62
51
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | VOLLERING Demi | 57 |
2 | CAVALLI Marta | 53 |
3 | ROOIJAKKERS Pauliena | 58 |
4 | LIPPERT Liane | 56 |
6 | FAULKNER Kristen | 62 |
7 | LABOUS Juliette | 54 |
8 | BARIL Olivia | 56 |
9 | MACKAIJ Floortje | 57 |
12 | CHABBEY Elise | 52 |
14 | BRAND Lucinda | 57 |
18 | KOREVAAR Jeanne | 59 |
20 | SPRATT Amanda | 55 |
21 | AMIALIUSIK Alena | 53 |
22 | DOEBEL-HICKOK Krista | 51 |
23 | ERIĆ Jelena | 53 |
24 | GUTIÉRREZ Sheyla | 60 |
27 | PALADIN Soraya | 59 |
29 | GUDERZO Tatiana | 54 |