Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Vos
1
58 kgFerrand-Prévot
2
53 kgvan der Breggen
3
56 kgJohansson
4
58 kgDeignan
5
57 kgLichtenberg
7
52 kgGuarnier
8
54 kgvan Vleuten
9
59 kgMajerus
10
56 kgCecchini
13
52 kgvan den Broek-Blaak
16
64 kgBrand
17
57 kgAmialiusik
18
53 kgBrennauer
19
63 kgPawlowska
20
60 kgScandolara
21
52 kgMarche
24
58 kgCordon-Ragot
25
60 kg
1
58 kgFerrand-Prévot
2
53 kgvan der Breggen
3
56 kgJohansson
4
58 kgDeignan
5
57 kgLichtenberg
7
52 kgGuarnier
8
54 kgvan Vleuten
9
59 kgMajerus
10
56 kgCecchini
13
52 kgvan den Broek-Blaak
16
64 kgBrand
17
57 kgAmialiusik
18
53 kgBrennauer
19
63 kgPawlowska
20
60 kgScandolara
21
52 kgMarche
24
58 kgCordon-Ragot
25
60 kg
Weight (KG) →
Result →
64
52
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
2 | FERRAND-PRÉVOT Pauline | 53 |
3 | VAN DER BREGGEN Anna | 56 |
4 | JOHANSSON Emma | 58 |
5 | DEIGNAN Elizabeth | 57 |
7 | LICHTENBERG Claudia | 52 |
8 | GUARNIER Megan | 54 |
9 | VAN VLEUTEN Annemiek | 59 |
10 | MAJERUS Christine | 56 |
13 | CECCHINI Elena | 52 |
16 | VAN DEN BROEK-BLAAK Chantal | 64 |
17 | BRAND Lucinda | 57 |
18 | AMIALIUSIK Alena | 53 |
19 | BRENNAUER Lisa | 63 |
20 | PAWLOWSKA Katarzyna | 60 |
21 | SCANDOLARA Valentina | 52 |
24 | MARCHE Shara | 58 |
25 | CORDON-RAGOT Audrey | 60 |