Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Ferrand-Prévot
1
53 kgVos
2
58 kgvan der Breggen
3
56 kgDeignan
4
57 kgJohansson
6
58 kgLichtenberg
7
52 kgvan Vleuten
8
59 kgGuarnier
9
54 kgMajerus
11
56 kgvan den Broek-Blaak
13
64 kgBrand
15
57 kgAmialiusik
16
53 kgPawlowska
18
60 kgCecchini
19
52 kgCordon-Ragot
21
60 kgvan Dijk
22
71 kgPieters
24
58 kgScandolara
25
52 kg
1
53 kgVos
2
58 kgvan der Breggen
3
56 kgDeignan
4
57 kgJohansson
6
58 kgLichtenberg
7
52 kgvan Vleuten
8
59 kgGuarnier
9
54 kgMajerus
11
56 kgvan den Broek-Blaak
13
64 kgBrand
15
57 kgAmialiusik
16
53 kgPawlowska
18
60 kgCecchini
19
52 kgCordon-Ragot
21
60 kgvan Dijk
22
71 kgPieters
24
58 kgScandolara
25
52 kg
Weight (KG) →
Result →
71
52
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | FERRAND-PRÉVOT Pauline | 53 |
2 | VOS Marianne | 58 |
3 | VAN DER BREGGEN Anna | 56 |
4 | DEIGNAN Elizabeth | 57 |
6 | JOHANSSON Emma | 58 |
7 | LICHTENBERG Claudia | 52 |
8 | VAN VLEUTEN Annemiek | 59 |
9 | GUARNIER Megan | 54 |
11 | MAJERUS Christine | 56 |
13 | VAN DEN BROEK-BLAAK Chantal | 64 |
15 | BRAND Lucinda | 57 |
16 | AMIALIUSIK Alena | 53 |
18 | PAWLOWSKA Katarzyna | 60 |
19 | CECCHINI Elena | 52 |
21 | CORDON-RAGOT Audrey | 60 |
22 | VAN DIJK Ellen | 71 |
24 | PIETERS Amy | 58 |
25 | SCANDOLARA Valentina | 52 |