Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Johansson
1
58 kgvan Vleuten
2
59 kgGuarnier
3
54 kgGarfoot
6
56 kgCecchini
7
52 kgRagažinskienė
8
58 kgvan der Breggen
9
56 kgvan den Broek-Blaak
10
64 kgSpratt
11
55 kgBrand
13
57 kgRiabchenko
14
57 kgStevens
15
55 kgScandolara
16
52 kgPaladin
17
59 kgMarche
18
58 kgSanchis
19
56 kgLaws
25
54 kg
1
58 kgvan Vleuten
2
59 kgGuarnier
3
54 kgGarfoot
6
56 kgCecchini
7
52 kgRagažinskienė
8
58 kgvan der Breggen
9
56 kgvan den Broek-Blaak
10
64 kgSpratt
11
55 kgBrand
13
57 kgRiabchenko
14
57 kgStevens
15
55 kgScandolara
16
52 kgPaladin
17
59 kgMarche
18
58 kgSanchis
19
56 kgLaws
25
54 kg
Weight (KG) →
Result →
64
52
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSSON Emma | 58 |
2 | VAN VLEUTEN Annemiek | 59 |
3 | GUARNIER Megan | 54 |
6 | GARFOOT Katrin | 56 |
7 | CECCHINI Elena | 52 |
8 | RAGAŽINSKIENĖ Daiva | 58 |
9 | VAN DER BREGGEN Anna | 56 |
10 | VAN DEN BROEK-BLAAK Chantal | 64 |
11 | SPRATT Amanda | 55 |
13 | BRAND Lucinda | 57 |
14 | RIABCHENKO Tetyana | 57 |
15 | STEVENS Evelyn | 55 |
16 | SCANDOLARA Valentina | 52 |
17 | PALADIN Soraya | 59 |
18 | MARCHE Shara | 58 |
19 | SANCHIS Anna | 56 |
25 | LAWS Sharon | 54 |