Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Guarnier
1
54 kgJohansson
2
58 kgvan Vleuten
4
59 kgBrand
6
57 kgRagažinskienė
7
58 kgScandolara
8
52 kgRiabchenko
9
57 kgSanchis
10
56 kgGarfoot
11
56 kgvan der Breggen
12
56 kgvan Dijk
13
71 kgPaladin
15
59 kgCecchini
16
52 kgSpratt
17
55 kgvan den Broek-Blaak
19
64 kgVieceli
20
59 kgOlaberria
22
61 kg
1
54 kgJohansson
2
58 kgvan Vleuten
4
59 kgBrand
6
57 kgRagažinskienė
7
58 kgScandolara
8
52 kgRiabchenko
9
57 kgSanchis
10
56 kgGarfoot
11
56 kgvan der Breggen
12
56 kgvan Dijk
13
71 kgPaladin
15
59 kgCecchini
16
52 kgSpratt
17
55 kgvan den Broek-Blaak
19
64 kgVieceli
20
59 kgOlaberria
22
61 kg
Weight (KG) →
Result →
71
52
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | GUARNIER Megan | 54 |
2 | JOHANSSON Emma | 58 |
4 | VAN VLEUTEN Annemiek | 59 |
6 | BRAND Lucinda | 57 |
7 | RAGAŽINSKIENĖ Daiva | 58 |
8 | SCANDOLARA Valentina | 52 |
9 | RIABCHENKO Tetyana | 57 |
10 | SANCHIS Anna | 56 |
11 | GARFOOT Katrin | 56 |
12 | VAN DER BREGGEN Anna | 56 |
13 | VAN DIJK Ellen | 71 |
15 | PALADIN Soraya | 59 |
16 | CECCHINI Elena | 52 |
17 | SPRATT Amanda | 55 |
19 | VAN DEN BROEK-BLAAK Chantal | 64 |
20 | VIECELI Lara | 59 |
22 | OLABERRIA Leire | 61 |