Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Johansson
1
58 kgvan Vleuten
2
59 kgGuarnier
3
54 kgStevens
6
55 kgGarfoot
7
56 kgRagažinskienė
8
58 kgRiabchenko
9
57 kgvan der Breggen
10
56 kgBrand
11
57 kgScandolara
12
52 kgSpratt
13
55 kgvan Dijk
14
71 kgSanchis
15
56 kgPaladin
16
59 kgMarche
17
58 kgCecchini
19
52 kgvan den Broek-Blaak
23
64 kgVieceli
24
59 kg
1
58 kgvan Vleuten
2
59 kgGuarnier
3
54 kgStevens
6
55 kgGarfoot
7
56 kgRagažinskienė
8
58 kgRiabchenko
9
57 kgvan der Breggen
10
56 kgBrand
11
57 kgScandolara
12
52 kgSpratt
13
55 kgvan Dijk
14
71 kgSanchis
15
56 kgPaladin
16
59 kgMarche
17
58 kgCecchini
19
52 kgvan den Broek-Blaak
23
64 kgVieceli
24
59 kg
Weight (KG) →
Result →
71
52
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSSON Emma | 58 |
2 | VAN VLEUTEN Annemiek | 59 |
3 | GUARNIER Megan | 54 |
6 | STEVENS Evelyn | 55 |
7 | GARFOOT Katrin | 56 |
8 | RAGAŽINSKIENĖ Daiva | 58 |
9 | RIABCHENKO Tetyana | 57 |
10 | VAN DER BREGGEN Anna | 56 |
11 | BRAND Lucinda | 57 |
12 | SCANDOLARA Valentina | 52 |
13 | SPRATT Amanda | 55 |
14 | VAN DIJK Ellen | 71 |
15 | SANCHIS Anna | 56 |
16 | PALADIN Soraya | 59 |
17 | MARCHE Shara | 58 |
19 | CECCHINI Elena | 52 |
23 | VAN DEN BROEK-BLAAK Chantal | 64 |
24 | VIECELI Lara | 59 |