Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Vleuten
1
59 kgJohansson
2
58 kgGuarnier
3
54 kgGarfoot
4
56 kgvan den Broek-Blaak
7
64 kgRagažinskienė
8
58 kgCecchini
9
52 kgvan Dijk
10
71 kgRiabchenko
12
57 kgSpratt
13
55 kgvan der Breggen
14
56 kgBrand
15
57 kgScandolara
16
52 kgPaladin
17
59 kgSanchis
18
56 kgMarche
19
58 kgStevens
20
55 kg
1
59 kgJohansson
2
58 kgGuarnier
3
54 kgGarfoot
4
56 kgvan den Broek-Blaak
7
64 kgRagažinskienė
8
58 kgCecchini
9
52 kgvan Dijk
10
71 kgRiabchenko
12
57 kgSpratt
13
55 kgvan der Breggen
14
56 kgBrand
15
57 kgScandolara
16
52 kgPaladin
17
59 kgSanchis
18
56 kgMarche
19
58 kgStevens
20
55 kg
Weight (KG) →
Result →
71
52
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VAN VLEUTEN Annemiek | 59 |
2 | JOHANSSON Emma | 58 |
3 | GUARNIER Megan | 54 |
4 | GARFOOT Katrin | 56 |
7 | VAN DEN BROEK-BLAAK Chantal | 64 |
8 | RAGAŽINSKIENĖ Daiva | 58 |
9 | CECCHINI Elena | 52 |
10 | VAN DIJK Ellen | 71 |
12 | RIABCHENKO Tetyana | 57 |
13 | SPRATT Amanda | 55 |
14 | VAN DER BREGGEN Anna | 56 |
15 | BRAND Lucinda | 57 |
16 | SCANDOLARA Valentina | 52 |
17 | PALADIN Soraya | 59 |
18 | SANCHIS Anna | 56 |
19 | MARCHE Shara | 58 |
20 | STEVENS Evelyn | 55 |