Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
van Vleuten
2
59 kgGarfoot
3
56 kgArchibald
4
75 kgSpratt
5
55 kgBastianelli
6
60 kgPaladin
8
59 kgDuyck
9
60 kgElvin
10
63 kgRooijakkers
15
58 kgMarche
17
58 kgSimmonds
18
55 kgSolovey
19
56 kgSiggaard
20
67 kgGonzález
23
51 kgVan Twisk
24
53 kgBloch-Davidov
27
59 kgYonamine
30
51 kgWilliams
31
60 kgRagazinskiene
37
58 kg
2
59 kgGarfoot
3
56 kgArchibald
4
75 kgSpratt
5
55 kgBastianelli
6
60 kgPaladin
8
59 kgDuyck
9
60 kgElvin
10
63 kgRooijakkers
15
58 kgMarche
17
58 kgSimmonds
18
55 kgSolovey
19
56 kgSiggaard
20
67 kgGonzález
23
51 kgVan Twisk
24
53 kgBloch-Davidov
27
59 kgYonamine
30
51 kgWilliams
31
60 kgRagazinskiene
37
58 kg
Weight (KG) →
Result →
75
51
2
37
# | Rider | Weight (KG) |
---|---|---|
2 | VAN VLEUTEN Annemiek | 59 |
3 | GARFOOT Katrin | 56 |
4 | ARCHIBALD Katie | 75 |
5 | SPRATT Amanda | 55 |
6 | BASTIANELLI Marta | 60 |
8 | PALADIN Soraya | 59 |
9 | DUYCK Ann-Sophie | 60 |
10 | ELVIN Gracie | 63 |
15 | ROOIJAKKERS Pauliena | 58 |
17 | MARCHE Shara | 58 |
18 | SIMMONDS Hayley | 55 |
19 | SOLOVEY Hanna | 56 |
20 | SIGGAARD Christina | 67 |
23 | GONZÁLEZ Alicia | 51 |
24 | VAN TWISK Abigail | 53 |
27 | BLOCH-DAVIDOV Shani | 59 |
30 | YONAMINE Eri | 51 |
31 | WILLIAMS Georgia | 60 |
37 | RAGAZINSKIENE Daiva | 58 |