Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Archibald
1
75 kgBastianelli
2
60 kgSpratt
3
55 kgPaladin
5
59 kgvan Vleuten
6
59 kgElvin
7
63 kgGarfoot
8
56 kgSiggaard
13
67 kgDuyck
14
60 kgSolovey
15
56 kgGonzález
18
51 kgVan Twisk
19
53 kgMarche
23
58 kgAlzini
25
64 kgYonamine
26
51 kgWilliams
27
60 kgSimmonds
32
55 kgRagažinskienė
33
58 kg
1
75 kgBastianelli
2
60 kgSpratt
3
55 kgPaladin
5
59 kgvan Vleuten
6
59 kgElvin
7
63 kgGarfoot
8
56 kgSiggaard
13
67 kgDuyck
14
60 kgSolovey
15
56 kgGonzález
18
51 kgVan Twisk
19
53 kgMarche
23
58 kgAlzini
25
64 kgYonamine
26
51 kgWilliams
27
60 kgSimmonds
32
55 kgRagažinskienė
33
58 kg
Weight (KG) →
Result →
75
51
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | ARCHIBALD Katie | 75 |
2 | BASTIANELLI Marta | 60 |
3 | SPRATT Amanda | 55 |
5 | PALADIN Soraya | 59 |
6 | VAN VLEUTEN Annemiek | 59 |
7 | ELVIN Gracie | 63 |
8 | GARFOOT Katrin | 56 |
13 | SIGGAARD Christina | 67 |
14 | DUYCK Ann-Sophie | 60 |
15 | SOLOVEY Hanna | 56 |
18 | GONZÁLEZ Alicia | 51 |
19 | VAN TWISK Abigail | 53 |
23 | MARCHE Shara | 58 |
25 | ALZINI Martina | 64 |
26 | YONAMINE Eri | 51 |
27 | WILLIAMS Georgia | 60 |
32 | SIMMONDS Hayley | 55 |
33 | RAGAŽINSKIENĖ Daiva | 58 |