Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 121
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Powless
1
67 kgAcevedo
3
63 kgMcCabe
5
72 kgMurphy
9
81 kgPerry
10
71 kgFlaksis
11
79 kgBusche
12
69 kgBurke
14
67 kgAlzate
21
74 kgHaedo
22
64 kgRoth
23
70 kgOien
40
68 kgGranigan
44
76 kgWhite
50
77 kgCalabria
60
55 kgZimmer
61
68 kgVandale
64
63 kgDisera
73
71 kgMiller
79
54 kgHernandez
93
74 kgSummerhill
105
70 kgFlautt
108
68 kg
1
67 kgAcevedo
3
63 kgMcCabe
5
72 kgMurphy
9
81 kgPerry
10
71 kgFlaksis
11
79 kgBusche
12
69 kgBurke
14
67 kgAlzate
21
74 kgHaedo
22
64 kgRoth
23
70 kgOien
40
68 kgGranigan
44
76 kgWhite
50
77 kgCalabria
60
55 kgZimmer
61
68 kgVandale
64
63 kgDisera
73
71 kgMiller
79
54 kgHernandez
93
74 kgSummerhill
105
70 kgFlautt
108
68 kg
Weight (KG) →
Result →
81
54
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | POWLESS Neilson | 67 |
3 | ACEVEDO Janier | 63 |
5 | MCCABE Travis | 72 |
9 | MURPHY John | 81 |
10 | PERRY Benjamin | 71 |
11 | FLAKSIS Andžs | 79 |
12 | BUSCHE Matthew | 69 |
14 | BURKE Jack | 67 |
21 | ALZATE Carlos | 74 |
22 | HAEDO Lucas Sebastián | 64 |
23 | ROTH Ryan | 70 |
40 | OIEN Justin | 68 |
44 | GRANIGAN Noah | 76 |
50 | WHITE Bradley | 77 |
60 | CALABRIA Fabio | 55 |
61 | ZIMMER Matt | 68 |
64 | VANDALE Danick | 63 |
73 | DISERA Peter | 71 |
79 | MILLER Barry | 54 |
93 | HERNANDEZ Michael | 74 |
105 | SUMMERHILL Daniel | 70 |
108 | FLAUTT Oliver | 68 |