Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 123
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
McCabe
1
72 kgPowless
2
67 kgAlzate
3
74 kgAcevedo
5
63 kgPerry
8
71 kgBurke
21
67 kgFlaksis
22
79 kgWhite
28
77 kgGranigan
33
76 kgOien
34
68 kgBusche
38
69 kgSummerhill
40
70 kgMurphy
43
81 kgHaedo
46
64 kgRoth
49
70 kgCalabria
65
55 kgFlautt
67
68 kgVandale
69
63 kgZimmer
79
68 kgMiller
83
54 kgDisera
109
71 kgHernandez
112
74 kg
1
72 kgPowless
2
67 kgAlzate
3
74 kgAcevedo
5
63 kgPerry
8
71 kgBurke
21
67 kgFlaksis
22
79 kgWhite
28
77 kgGranigan
33
76 kgOien
34
68 kgBusche
38
69 kgSummerhill
40
70 kgMurphy
43
81 kgHaedo
46
64 kgRoth
49
70 kgCalabria
65
55 kgFlautt
67
68 kgVandale
69
63 kgZimmer
79
68 kgMiller
83
54 kgDisera
109
71 kgHernandez
112
74 kg
Weight (KG) →
Result →
81
54
1
112
# | Rider | Weight (KG) |
---|---|---|
1 | MCCABE Travis | 72 |
2 | POWLESS Neilson | 67 |
3 | ALZATE Carlos | 74 |
5 | ACEVEDO Janier | 63 |
8 | PERRY Benjamin | 71 |
21 | BURKE Jack | 67 |
22 | FLAKSIS Andžs | 79 |
28 | WHITE Bradley | 77 |
33 | GRANIGAN Noah | 76 |
34 | OIEN Justin | 68 |
38 | BUSCHE Matthew | 69 |
40 | SUMMERHILL Daniel | 70 |
43 | MURPHY John | 81 |
46 | HAEDO Lucas Sebastián | 64 |
49 | ROTH Ryan | 70 |
65 | CALABRIA Fabio | 55 |
67 | FLAUTT Oliver | 68 |
69 | VANDALE Danick | 63 |
79 | ZIMMER Matt | 68 |
83 | MILLER Barry | 54 |
109 | DISERA Peter | 71 |
112 | HERNANDEZ Michael | 74 |