Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Piccoli
2
65 kgHoehn
3
63 kgZimmer
4
68 kgStites
7
60 kgPavlič
9
65 kgGranigan
12
76 kgMiles
16
64 kgVollmer
17
67 kgLeplingard
20
68 kgArnopol
22
61 kgHernandez
27
74 kgHartig
32
77 kgBeadle
38
64 kgVan Zyl
41
72 kgBickmore
43
74 kgKoontz
49
80 kgCastillo
51
72 kgde Keijzer
62
72.6 kgSheehan
65
69 kgPrado
69
65 kgPalamarek
75
61 kgGervais
79
72 kgBausbacher
80
59 kg
2
65 kgHoehn
3
63 kgZimmer
4
68 kgStites
7
60 kgPavlič
9
65 kgGranigan
12
76 kgMiles
16
64 kgVollmer
17
67 kgLeplingard
20
68 kgArnopol
22
61 kgHernandez
27
74 kgHartig
32
77 kgBeadle
38
64 kgVan Zyl
41
72 kgBickmore
43
74 kgKoontz
49
80 kgCastillo
51
72 kgde Keijzer
62
72.6 kgSheehan
65
69 kgPrado
69
65 kgPalamarek
75
61 kgGervais
79
72 kgBausbacher
80
59 kg
Weight (KG) →
Result →
80
59
2
80
# | Rider | Weight (KG) |
---|---|---|
2 | PICCOLI James | 65 |
3 | HOEHN Alex | 63 |
4 | ZIMMER Matt | 68 |
7 | STITES Tyler | 60 |
9 | PAVLIČ Marko | 65 |
12 | GRANIGAN Noah | 76 |
16 | MILES Carson | 64 |
17 | VOLLMER Andrew | 67 |
20 | LEPLINGARD Antoine | 68 |
22 | ARNOPOL Richard | 61 |
27 | HERNANDEZ Michael | 74 |
32 | HARTIG Evan | 77 |
38 | BEADLE Hamish | 64 |
41 | VAN ZYL Johann | 72 |
43 | BICKMORE Cade | 74 |
49 | KOONTZ Grant | 80 |
51 | CASTILLO Ulises Alfredo | 72 |
62 | DE KEIJZER Gerd | 72.6 |
65 | SHEEHAN Riley | 69 |
69 | PRADO Ignacio de Jesús | 65 |
75 | PALAMAREK Ethan | 61 |
79 | GERVAIS Laurent | 72 |
80 | BAUSBACHER Evan | 59 |