Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Castillo
2
72 kgHoehn
3
63 kgHernandez
4
74 kgGranigan
6
76 kgPrado
9
65 kgLeplingard
15
68 kgStites
18
60 kgZimmer
19
68 kgPalamarek
21
61 kgPiccoli
23
65 kgMiles
27
64 kgPavlič
28
65 kgHartig
32
77 kgVollmer
34
67 kgArnopol
36
61 kgBickmore
37
74 kgKoontz
46
80 kgBausbacher
47
59 kgGervais
48
72 kgBeadle
52
64 kgVan Zyl
58
72 kgSheehan
71
69 kgde Keijzer
74
72.6 kg
2
72 kgHoehn
3
63 kgHernandez
4
74 kgGranigan
6
76 kgPrado
9
65 kgLeplingard
15
68 kgStites
18
60 kgZimmer
19
68 kgPalamarek
21
61 kgPiccoli
23
65 kgMiles
27
64 kgPavlič
28
65 kgHartig
32
77 kgVollmer
34
67 kgArnopol
36
61 kgBickmore
37
74 kgKoontz
46
80 kgBausbacher
47
59 kgGervais
48
72 kgBeadle
52
64 kgVan Zyl
58
72 kgSheehan
71
69 kgde Keijzer
74
72.6 kg
Weight (KG) →
Result →
80
59
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | CASTILLO Ulises Alfredo | 72 |
3 | HOEHN Alex | 63 |
4 | HERNANDEZ Michael | 74 |
6 | GRANIGAN Noah | 76 |
9 | PRADO Ignacio de Jesús | 65 |
15 | LEPLINGARD Antoine | 68 |
18 | STITES Tyler | 60 |
19 | ZIMMER Matt | 68 |
21 | PALAMAREK Ethan | 61 |
23 | PICCOLI James | 65 |
27 | MILES Carson | 64 |
28 | PAVLIČ Marko | 65 |
32 | HARTIG Evan | 77 |
34 | VOLLMER Andrew | 67 |
36 | ARNOPOL Richard | 61 |
37 | BICKMORE Cade | 74 |
46 | KOONTZ Grant | 80 |
47 | BAUSBACHER Evan | 59 |
48 | GERVAIS Laurent | 72 |
52 | BEADLE Hamish | 64 |
58 | VAN ZYL Johann | 72 |
71 | SHEEHAN Riley | 69 |
74 | DE KEIJZER Gerd | 72.6 |