Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Williams
1
73 kgHecht
2
72 kgSevilla
3
62 kgRoberge
5
72 kgMcdonald
9
65 kgHartig
10
77 kgStites
11
60 kgBickmore
16
74 kgSchunk
19
65 kgArnopol
23
61 kgOvett
24
64 kgZimmer
28
68 kgBausbacher
35
59 kgChalapud
41
63 kgDuarte
44
55 kgVargas
45
69 kgMcNeil
46
57 kgScott
49
66 kgPrado
56
65 kgRøed
69
74 kgFlanagan
71
67 kgWilliams
74
85 kgRudderham
78
73 kg
1
73 kgHecht
2
72 kgSevilla
3
62 kgRoberge
5
72 kgMcdonald
9
65 kgHartig
10
77 kgStites
11
60 kgBickmore
16
74 kgSchunk
19
65 kgArnopol
23
61 kgOvett
24
64 kgZimmer
28
68 kgBausbacher
35
59 kgChalapud
41
63 kgDuarte
44
55 kgVargas
45
69 kgMcNeil
46
57 kgScott
49
66 kgPrado
56
65 kgRøed
69
74 kgFlanagan
71
67 kgWilliams
74
85 kgRudderham
78
73 kg
Weight (KG) →
Result →
85
55
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | WILLIAMS Tyler | 73 |
2 | HECHT Gage | 72 |
3 | SEVILLA Óscar | 62 |
5 | ROBERGE Adam | 72 |
9 | MCDONALD Brody | 65 |
10 | HARTIG Evan | 77 |
11 | STITES Tyler | 60 |
16 | BICKMORE Cade | 74 |
19 | SCHUNK Conor | 65 |
23 | ARNOPOL Richard | 61 |
24 | OVETT Freddy | 64 |
28 | ZIMMER Matt | 68 |
35 | BAUSBACHER Evan | 59 |
41 | CHALAPUD Robinson | 63 |
44 | DUARTE Fabio | 55 |
45 | VARGAS Walter | 69 |
46 | MCNEIL Aidan | 57 |
49 | SCOTT Jared | 66 |
56 | PRADO Ignacio de Jesús | 65 |
69 | RØED Torbjørn Andre | 74 |
71 | FLANAGAN Liam | 67 |
74 | WILLIAMS Cory | 85 |
78 | RUDDERHAM Ryan | 73 |