Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 71
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Williams
1
73 kgSevilla
2
62 kgHecht
3
72 kgRoberge
4
72 kgStites
6
60 kgArnopol
7
61 kgMcdonald
9
65 kgSchunk
11
65 kgZimmer
12
68 kgBausbacher
16
59 kgDuarte
18
55 kgVargas
33
69 kgChalapud
37
63 kgMcNeil
38
57 kgOvett
42
64 kgHartig
43
77 kgBickmore
51
74 kgPrado
58
65 kgRøed
59
74 kgRudderham
67
73 kgFlanagan
73
67 kgWilliams
76
85 kg
1
73 kgSevilla
2
62 kgHecht
3
72 kgRoberge
4
72 kgStites
6
60 kgArnopol
7
61 kgMcdonald
9
65 kgSchunk
11
65 kgZimmer
12
68 kgBausbacher
16
59 kgDuarte
18
55 kgVargas
33
69 kgChalapud
37
63 kgMcNeil
38
57 kgOvett
42
64 kgHartig
43
77 kgBickmore
51
74 kgPrado
58
65 kgRøed
59
74 kgRudderham
67
73 kgFlanagan
73
67 kgWilliams
76
85 kg
Weight (KG) →
Result →
85
55
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | WILLIAMS Tyler | 73 |
2 | SEVILLA Óscar | 62 |
3 | HECHT Gage | 72 |
4 | ROBERGE Adam | 72 |
6 | STITES Tyler | 60 |
7 | ARNOPOL Richard | 61 |
9 | MCDONALD Brody | 65 |
11 | SCHUNK Conor | 65 |
12 | ZIMMER Matt | 68 |
16 | BAUSBACHER Evan | 59 |
18 | DUARTE Fabio | 55 |
33 | VARGAS Walter | 69 |
37 | CHALAPUD Robinson | 63 |
38 | MCNEIL Aidan | 57 |
42 | OVETT Freddy | 64 |
43 | HARTIG Evan | 77 |
51 | BICKMORE Cade | 74 |
58 | PRADO Ignacio de Jesús | 65 |
59 | RØED Torbjørn Andre | 74 |
67 | RUDDERHAM Ryan | 73 |
73 | FLANAGAN Liam | 67 |
76 | WILLIAMS Cory | 85 |