Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 58
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Stites
1
60 kgWilliams
2
73 kgArnopol
3
61 kgHecht
4
72 kgZimmer
6
68 kgSevilla
7
62 kgRøed
8
74 kgMcdonald
9
65 kgRoberge
12
72 kgSchunk
14
65 kgBausbacher
16
59 kgDuarte
18
55 kgVargas
31
69 kgChalapud
45
63 kgMcNeil
47
57 kgOvett
52
64 kgHartig
57
77 kgRudderham
61
73 kgPrado
69
65 kgWilliams
75
85 kgBickmore
78
74 kgFlanagan
80
67 kg
1
60 kgWilliams
2
73 kgArnopol
3
61 kgHecht
4
72 kgZimmer
6
68 kgSevilla
7
62 kgRøed
8
74 kgMcdonald
9
65 kgRoberge
12
72 kgSchunk
14
65 kgBausbacher
16
59 kgDuarte
18
55 kgVargas
31
69 kgChalapud
45
63 kgMcNeil
47
57 kgOvett
52
64 kgHartig
57
77 kgRudderham
61
73 kgPrado
69
65 kgWilliams
75
85 kgBickmore
78
74 kgFlanagan
80
67 kg
Weight (KG) →
Result →
85
55
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | STITES Tyler | 60 |
2 | WILLIAMS Tyler | 73 |
3 | ARNOPOL Richard | 61 |
4 | HECHT Gage | 72 |
6 | ZIMMER Matt | 68 |
7 | SEVILLA Óscar | 62 |
8 | RØED Torbjørn Andre | 74 |
9 | MCDONALD Brody | 65 |
12 | ROBERGE Adam | 72 |
14 | SCHUNK Conor | 65 |
16 | BAUSBACHER Evan | 59 |
18 | DUARTE Fabio | 55 |
31 | VARGAS Walter | 69 |
45 | CHALAPUD Robinson | 63 |
47 | MCNEIL Aidan | 57 |
52 | OVETT Freddy | 64 |
57 | HARTIG Evan | 77 |
61 | RUDDERHAM Ryan | 73 |
69 | PRADO Ignacio de Jesús | 65 |
75 | WILLIAMS Cory | 85 |
78 | BICKMORE Cade | 74 |
80 | FLANAGAN Liam | 67 |