Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 71
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Hecht
1
72 kgWilliams
2
73 kgSevilla
3
62 kgRoberge
4
72 kgStites
5
60 kgArnopol
7
61 kgZimmer
10
68 kgDuarte
12
55 kgSchunk
16
65 kgVargas
19
69 kgMcdonald
20
65 kgBausbacher
22
59 kgChalapud
35
63 kgMcNeil
36
57 kgOvett
40
64 kgHartig
45
77 kgBickmore
50
74 kgRøed
58
74 kgPrado
60
65 kgRudderham
67
73 kgFlanagan
73
67 kgWilliams
76
85 kg
1
72 kgWilliams
2
73 kgSevilla
3
62 kgRoberge
4
72 kgStites
5
60 kgArnopol
7
61 kgZimmer
10
68 kgDuarte
12
55 kgSchunk
16
65 kgVargas
19
69 kgMcdonald
20
65 kgBausbacher
22
59 kgChalapud
35
63 kgMcNeil
36
57 kgOvett
40
64 kgHartig
45
77 kgBickmore
50
74 kgRøed
58
74 kgPrado
60
65 kgRudderham
67
73 kgFlanagan
73
67 kgWilliams
76
85 kg
Weight (KG) →
Result →
85
55
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | HECHT Gage | 72 |
2 | WILLIAMS Tyler | 73 |
3 | SEVILLA Óscar | 62 |
4 | ROBERGE Adam | 72 |
5 | STITES Tyler | 60 |
7 | ARNOPOL Richard | 61 |
10 | ZIMMER Matt | 68 |
12 | DUARTE Fabio | 55 |
16 | SCHUNK Conor | 65 |
19 | VARGAS Walter | 69 |
20 | MCDONALD Brody | 65 |
22 | BAUSBACHER Evan | 59 |
35 | CHALAPUD Robinson | 63 |
36 | MCNEIL Aidan | 57 |
40 | OVETT Freddy | 64 |
45 | HARTIG Evan | 77 |
50 | BICKMORE Cade | 74 |
58 | RØED Torbjørn Andre | 74 |
60 | PRADO Ignacio de Jesús | 65 |
67 | RUDDERHAM Ryan | 73 |
73 | FLANAGAN Liam | 67 |
76 | WILLIAMS Cory | 85 |