Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Hecht
1
72 kgVargas
2
69 kgStites
3
60 kgRoberge
4
72 kgWilliams
6
73 kgRøed
9
74 kgDuarte
10
55 kgOvett
12
64 kgArnopol
17
61 kgSevilla
18
62 kgZimmer
19
68 kgSchunk
27
65 kgRudderham
28
73 kgMcNeil
31
57 kgChalapud
32
63 kgMcdonald
37
65 kgBickmore
40
74 kgBausbacher
50
59 kgWilliams
52
85 kgHartig
57
77 kgPrado
60
65 kgFlanagan
76
67 kg
1
72 kgVargas
2
69 kgStites
3
60 kgRoberge
4
72 kgWilliams
6
73 kgRøed
9
74 kgDuarte
10
55 kgOvett
12
64 kgArnopol
17
61 kgSevilla
18
62 kgZimmer
19
68 kgSchunk
27
65 kgRudderham
28
73 kgMcNeil
31
57 kgChalapud
32
63 kgMcdonald
37
65 kgBickmore
40
74 kgBausbacher
50
59 kgWilliams
52
85 kgHartig
57
77 kgPrado
60
65 kgFlanagan
76
67 kg
Weight (KG) →
Result →
85
55
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | HECHT Gage | 72 |
2 | VARGAS Walter | 69 |
3 | STITES Tyler | 60 |
4 | ROBERGE Adam | 72 |
6 | WILLIAMS Tyler | 73 |
9 | RØED Torbjørn Andre | 74 |
10 | DUARTE Fabio | 55 |
12 | OVETT Freddy | 64 |
17 | ARNOPOL Richard | 61 |
18 | SEVILLA Óscar | 62 |
19 | ZIMMER Matt | 68 |
27 | SCHUNK Conor | 65 |
28 | RUDDERHAM Ryan | 73 |
31 | MCNEIL Aidan | 57 |
32 | CHALAPUD Robinson | 63 |
37 | MCDONALD Brody | 65 |
40 | BICKMORE Cade | 74 |
50 | BAUSBACHER Evan | 59 |
52 | WILLIAMS Cory | 85 |
57 | HARTIG Evan | 77 |
60 | PRADO Ignacio de Jesús | 65 |
76 | FLANAGAN Liam | 67 |