Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Chalapud
4
63 kgWilliams
8
73 kgHecht
11
72 kgSevilla
13
62 kgDuarte
14
55 kgHartig
15
77 kgArnopol
17
61 kgStites
18
60 kgZimmer
21
68 kgSchunk
27
65 kgBausbacher
30
59 kgRoberge
31
72 kgRøed
35
74 kgVargas
38
69 kgMcNeil
40
57 kgMcdonald
42
65 kgBickmore
45
74 kgOvett
47
64 kgWilliams
49
85 kgFlanagan
53
67 kgRudderham
63
73 kg
4
63 kgWilliams
8
73 kgHecht
11
72 kgSevilla
13
62 kgDuarte
14
55 kgHartig
15
77 kgArnopol
17
61 kgStites
18
60 kgZimmer
21
68 kgSchunk
27
65 kgBausbacher
30
59 kgRoberge
31
72 kgRøed
35
74 kgVargas
38
69 kgMcNeil
40
57 kgMcdonald
42
65 kgBickmore
45
74 kgOvett
47
64 kgWilliams
49
85 kgFlanagan
53
67 kgRudderham
63
73 kg
Weight (KG) →
Result →
85
55
4
63
# | Rider | Weight (KG) |
---|---|---|
4 | CHALAPUD Robinson | 63 |
8 | WILLIAMS Tyler | 73 |
11 | HECHT Gage | 72 |
13 | SEVILLA Óscar | 62 |
14 | DUARTE Fabio | 55 |
15 | HARTIG Evan | 77 |
17 | ARNOPOL Richard | 61 |
18 | STITES Tyler | 60 |
21 | ZIMMER Matt | 68 |
27 | SCHUNK Conor | 65 |
30 | BAUSBACHER Evan | 59 |
31 | ROBERGE Adam | 72 |
35 | RØED Torbjørn Andre | 74 |
38 | VARGAS Walter | 69 |
40 | MCNEIL Aidan | 57 |
42 | MCDONALD Brody | 65 |
45 | BICKMORE Cade | 74 |
47 | OVETT Freddy | 64 |
49 | WILLIAMS Cory | 85 |
53 | FLANAGAN Liam | 67 |
63 | RUDDERHAM Ryan | 73 |