Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 50
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Clarke
1
68 kgGranigan
2
76 kgStites
3
60 kgHenao
4
61 kgRøed
5
74 kgBurnett
11
73 kgBausbacher
12
59 kgArango
14
62 kgFoley
17
72 kgGeary
23
71 kgDal-Cin
24
77 kgOvett
27
64 kgJackson
28
75 kgWilliams
32
73 kgHernandez
37
74 kgZimmer
47
68 kgFlanagan
53
67 kgGilbertson
54
68 kgWhite
57
79 kgRitchie
59
75 kg
1
68 kgGranigan
2
76 kgStites
3
60 kgHenao
4
61 kgRøed
5
74 kgBurnett
11
73 kgBausbacher
12
59 kgArango
14
62 kgFoley
17
72 kgGeary
23
71 kgDal-Cin
24
77 kgOvett
27
64 kgJackson
28
75 kgWilliams
32
73 kgHernandez
37
74 kgZimmer
47
68 kgFlanagan
53
67 kgGilbertson
54
68 kgWhite
57
79 kgRitchie
59
75 kg
Weight (KG) →
Result →
79
59
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | CLARKE Jonathan | 68 |
2 | GRANIGAN Noah | 76 |
3 | STITES Tyler | 60 |
4 | HENAO Sergio | 61 |
5 | RØED Torbjørn Andre | 74 |
11 | BURNETT Josh | 73 |
12 | BAUSBACHER Evan | 59 |
14 | ARANGO Juan Esteban | 62 |
17 | FOLEY Michael | 72 |
23 | GEARY Dillon | 71 |
24 | DAL-CIN Matteo | 77 |
27 | OVETT Freddy | 64 |
28 | JACKSON George | 75 |
32 | WILLIAMS Tyler | 73 |
37 | HERNANDEZ Michael | 74 |
47 | ZIMMER Matt | 68 |
53 | FLANAGAN Liam | 67 |
54 | GILBERTSON Theo | 68 |
57 | WHITE Conor | 79 |
59 | RITCHIE Samuel | 75 |