Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 116
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Clarke
1
68 kgGranigan
2
76 kgStites
3
60 kgHenao
4
61 kgArango
6
62 kgDal-Cin
11
77 kgFoley
12
72 kgCastillo
14
72 kgWilliams
15
73 kgRøed
23
74 kgBausbacher
25
59 kgJackson
31
75 kgGeary
34
71 kgBurnett
38
73 kgOvett
40
64 kgHernandez
42
74 kgZimmer
58
68 kgSánchez
64
72 kgFlanagan
66
67 kgMcquerry
69
78 kgRitchie
77
75 kgGilbertson
89
68 kgWhite
90
79 kgHennis
100
89 kg
1
68 kgGranigan
2
76 kgStites
3
60 kgHenao
4
61 kgArango
6
62 kgDal-Cin
11
77 kgFoley
12
72 kgCastillo
14
72 kgWilliams
15
73 kgRøed
23
74 kgBausbacher
25
59 kgJackson
31
75 kgGeary
34
71 kgBurnett
38
73 kgOvett
40
64 kgHernandez
42
74 kgZimmer
58
68 kgSánchez
64
72 kgFlanagan
66
67 kgMcquerry
69
78 kgRitchie
77
75 kgGilbertson
89
68 kgWhite
90
79 kgHennis
100
89 kg
Weight (KG) →
Result →
89
59
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | CLARKE Jonathan | 68 |
2 | GRANIGAN Noah | 76 |
3 | STITES Tyler | 60 |
4 | HENAO Sergio | 61 |
6 | ARANGO Juan Esteban | 62 |
11 | DAL-CIN Matteo | 77 |
12 | FOLEY Michael | 72 |
14 | CASTILLO Ulises Alfredo | 72 |
15 | WILLIAMS Tyler | 73 |
23 | RØED Torbjørn Andre | 74 |
25 | BAUSBACHER Evan | 59 |
31 | JACKSON George | 75 |
34 | GEARY Dillon | 71 |
38 | BURNETT Josh | 73 |
40 | OVETT Freddy | 64 |
42 | HERNANDEZ Michael | 74 |
58 | ZIMMER Matt | 68 |
64 | SÁNCHEZ Augusto | 72 |
66 | FLANAGAN Liam | 67 |
69 | MCQUERRY Justin | 78 |
77 | RITCHIE Samuel | 75 |
89 | GILBERTSON Theo | 68 |
90 | WHITE Conor | 79 |
100 | HENNIS Hasani | 89 |