Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 101
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Clarke
1
68 kgGranigan
2
76 kgStites
3
60 kgHenao
4
61 kgRøed
7
74 kgFoley
12
72 kgBausbacher
13
59 kgArango
16
62 kgBurnett
19
73 kgGeary
23
71 kgDal-Cin
27
77 kgOvett
30
64 kgCastillo
33
72 kgJackson
35
75 kgWilliams
39
73 kgHernandez
47
74 kgZimmer
55
68 kgSánchez
58
72 kgRitchie
63
75 kgFlanagan
64
67 kgGilbertson
65
68 kgWhite
71
79 kgMcquerry
92
78 kg
1
68 kgGranigan
2
76 kgStites
3
60 kgHenao
4
61 kgRøed
7
74 kgFoley
12
72 kgBausbacher
13
59 kgArango
16
62 kgBurnett
19
73 kgGeary
23
71 kgDal-Cin
27
77 kgOvett
30
64 kgCastillo
33
72 kgJackson
35
75 kgWilliams
39
73 kgHernandez
47
74 kgZimmer
55
68 kgSánchez
58
72 kgRitchie
63
75 kgFlanagan
64
67 kgGilbertson
65
68 kgWhite
71
79 kgMcquerry
92
78 kg
Weight (KG) →
Result →
79
59
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | CLARKE Jonathan | 68 |
2 | GRANIGAN Noah | 76 |
3 | STITES Tyler | 60 |
4 | HENAO Sergio | 61 |
7 | RØED Torbjørn Andre | 74 |
12 | FOLEY Michael | 72 |
13 | BAUSBACHER Evan | 59 |
16 | ARANGO Juan Esteban | 62 |
19 | BURNETT Josh | 73 |
23 | GEARY Dillon | 71 |
27 | DAL-CIN Matteo | 77 |
30 | OVETT Freddy | 64 |
33 | CASTILLO Ulises Alfredo | 72 |
35 | JACKSON George | 75 |
39 | WILLIAMS Tyler | 73 |
47 | HERNANDEZ Michael | 74 |
55 | ZIMMER Matt | 68 |
58 | SÁNCHEZ Augusto | 72 |
63 | RITCHIE Samuel | 75 |
64 | FLANAGAN Liam | 67 |
65 | GILBERTSON Theo | 68 |
71 | WHITE Conor | 79 |
92 | MCQUERRY Justin | 78 |