Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 105
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Granigan
1
76 kgStites
3
60 kgHenao
4
61 kgRøed
5
74 kgClarke
7
68 kgBausbacher
9
59 kgBurnett
12
73 kgGeary
20
71 kgFoley
21
72 kgArango
25
62 kgOvett
36
64 kgDal-Cin
43
77 kgWhite
44
79 kgRitchie
48
75 kgFlanagan
50
67 kgGilbertson
54
68 kgCastillo
55
72 kgJackson
56
75 kgZimmer
65
68 kgSánchez
67
72 kgWilliams
71
73 kgHernandez
73
74 kgMcquerry
92
78 kg
1
76 kgStites
3
60 kgHenao
4
61 kgRøed
5
74 kgClarke
7
68 kgBausbacher
9
59 kgBurnett
12
73 kgGeary
20
71 kgFoley
21
72 kgArango
25
62 kgOvett
36
64 kgDal-Cin
43
77 kgWhite
44
79 kgRitchie
48
75 kgFlanagan
50
67 kgGilbertson
54
68 kgCastillo
55
72 kgJackson
56
75 kgZimmer
65
68 kgSánchez
67
72 kgWilliams
71
73 kgHernandez
73
74 kgMcquerry
92
78 kg
Weight (KG) →
Result →
79
59
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | GRANIGAN Noah | 76 |
3 | STITES Tyler | 60 |
4 | HENAO Sergio | 61 |
5 | RØED Torbjørn Andre | 74 |
7 | CLARKE Jonathan | 68 |
9 | BAUSBACHER Evan | 59 |
12 | BURNETT Josh | 73 |
20 | GEARY Dillon | 71 |
21 | FOLEY Michael | 72 |
25 | ARANGO Juan Esteban | 62 |
36 | OVETT Freddy | 64 |
43 | DAL-CIN Matteo | 77 |
44 | WHITE Conor | 79 |
48 | RITCHIE Samuel | 75 |
50 | FLANAGAN Liam | 67 |
54 | GILBERTSON Theo | 68 |
55 | CASTILLO Ulises Alfredo | 72 |
56 | JACKSON George | 75 |
65 | ZIMMER Matt | 68 |
67 | SÁNCHEZ Augusto | 72 |
71 | WILLIAMS Tyler | 73 |
73 | HERNANDEZ Michael | 74 |
92 | MCQUERRY Justin | 78 |