Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 94
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Clarke
1
68 kgStites
2
60 kgGranigan
3
76 kgHenao
4
61 kgRøed
6
74 kgBurnett
11
73 kgBausbacher
15
59 kgFoley
16
72 kgArango
18
62 kgDal-Cin
24
77 kgGeary
26
71 kgOvett
31
64 kgCastillo
32
72 kgJackson
33
75 kgWilliams
38
73 kgHernandez
47
74 kgZimmer
55
68 kgSánchez
61
72 kgRitchie
63
75 kgFlanagan
64
67 kgGilbertson
65
68 kgWhite
71
79 kgMcquerry
92
78 kg
1
68 kgStites
2
60 kgGranigan
3
76 kgHenao
4
61 kgRøed
6
74 kgBurnett
11
73 kgBausbacher
15
59 kgFoley
16
72 kgArango
18
62 kgDal-Cin
24
77 kgGeary
26
71 kgOvett
31
64 kgCastillo
32
72 kgJackson
33
75 kgWilliams
38
73 kgHernandez
47
74 kgZimmer
55
68 kgSánchez
61
72 kgRitchie
63
75 kgFlanagan
64
67 kgGilbertson
65
68 kgWhite
71
79 kgMcquerry
92
78 kg
Weight (KG) →
Result →
79
59
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | CLARKE Jonathan | 68 |
2 | STITES Tyler | 60 |
3 | GRANIGAN Noah | 76 |
4 | HENAO Sergio | 61 |
6 | RØED Torbjørn Andre | 74 |
11 | BURNETT Josh | 73 |
15 | BAUSBACHER Evan | 59 |
16 | FOLEY Michael | 72 |
18 | ARANGO Juan Esteban | 62 |
24 | DAL-CIN Matteo | 77 |
26 | GEARY Dillon | 71 |
31 | OVETT Freddy | 64 |
32 | CASTILLO Ulises Alfredo | 72 |
33 | JACKSON George | 75 |
38 | WILLIAMS Tyler | 73 |
47 | HERNANDEZ Michael | 74 |
55 | ZIMMER Matt | 68 |
61 | SÁNCHEZ Augusto | 72 |
63 | RITCHIE Samuel | 75 |
64 | FLANAGAN Liam | 67 |
65 | GILBERTSON Theo | 68 |
71 | WHITE Conor | 79 |
92 | MCQUERRY Justin | 78 |