Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 30
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Stites
3
60 kgJackson
4
75 kgHenao
7
61 kgRøed
10
74 kgDal-Cin
12
77 kgGranigan
14
76 kgWilliams
16
73 kgBurnett
17
73 kgClarke
18
68 kgWhite
24
79 kgRitchie
37
75 kgCastillo
39
72 kgGilbertson
42
68 kgArango
43
62 kgGeary
44
71 kgZimmer
48
68 kgBausbacher
51
59 kgOvett
52
64 kgFoley
56
72 kgFlanagan
63
67 kgHernandez
74
74 kgMcquerry
81
78 kgSánchez
91
72 kg
3
60 kgJackson
4
75 kgHenao
7
61 kgRøed
10
74 kgDal-Cin
12
77 kgGranigan
14
76 kgWilliams
16
73 kgBurnett
17
73 kgClarke
18
68 kgWhite
24
79 kgRitchie
37
75 kgCastillo
39
72 kgGilbertson
42
68 kgArango
43
62 kgGeary
44
71 kgZimmer
48
68 kgBausbacher
51
59 kgOvett
52
64 kgFoley
56
72 kgFlanagan
63
67 kgHernandez
74
74 kgMcquerry
81
78 kgSánchez
91
72 kg
Weight (KG) →
Result →
79
59
3
91
# | Rider | Weight (KG) |
---|---|---|
3 | STITES Tyler | 60 |
4 | JACKSON George | 75 |
7 | HENAO Sergio | 61 |
10 | RØED Torbjørn Andre | 74 |
12 | DAL-CIN Matteo | 77 |
14 | GRANIGAN Noah | 76 |
16 | WILLIAMS Tyler | 73 |
17 | BURNETT Josh | 73 |
18 | CLARKE Jonathan | 68 |
24 | WHITE Conor | 79 |
37 | RITCHIE Samuel | 75 |
39 | CASTILLO Ulises Alfredo | 72 |
42 | GILBERTSON Theo | 68 |
43 | ARANGO Juan Esteban | 62 |
44 | GEARY Dillon | 71 |
48 | ZIMMER Matt | 68 |
51 | BAUSBACHER Evan | 59 |
52 | OVETT Freddy | 64 |
56 | FOLEY Michael | 72 |
63 | FLANAGAN Liam | 67 |
74 | HERNANDEZ Michael | 74 |
81 | MCQUERRY Justin | 78 |
91 | SÁNCHEZ Augusto | 72 |