Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 35
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Williams
2
73 kgBausbacher
4
59 kgArango
5
62 kgRøed
6
74 kgGranigan
14
76 kgFoley
15
72 kgJackson
16
75 kgStites
19
60 kgClarke
21
68 kgHenao
22
61 kgBurnett
23
73 kgOvett
25
64 kgFlanagan
28
67 kgWhite
29
79 kgGeary
32
71 kgGilbertson
39
68 kgHernandez
48
74 kgDal-Cin
49
77 kgZimmer
54
68 kgRitchie
63
75 kg
2
73 kgBausbacher
4
59 kgArango
5
62 kgRøed
6
74 kgGranigan
14
76 kgFoley
15
72 kgJackson
16
75 kgStites
19
60 kgClarke
21
68 kgHenao
22
61 kgBurnett
23
73 kgOvett
25
64 kgFlanagan
28
67 kgWhite
29
79 kgGeary
32
71 kgGilbertson
39
68 kgHernandez
48
74 kgDal-Cin
49
77 kgZimmer
54
68 kgRitchie
63
75 kg
Weight (KG) →
Result →
79
59
2
63
# | Rider | Weight (KG) |
---|---|---|
2 | WILLIAMS Tyler | 73 |
4 | BAUSBACHER Evan | 59 |
5 | ARANGO Juan Esteban | 62 |
6 | RØED Torbjørn Andre | 74 |
14 | GRANIGAN Noah | 76 |
15 | FOLEY Michael | 72 |
16 | JACKSON George | 75 |
19 | STITES Tyler | 60 |
21 | CLARKE Jonathan | 68 |
22 | HENAO Sergio | 61 |
23 | BURNETT Josh | 73 |
25 | OVETT Freddy | 64 |
28 | FLANAGAN Liam | 67 |
29 | WHITE Conor | 79 |
32 | GEARY Dillon | 71 |
39 | GILBERTSON Theo | 68 |
48 | HERNANDEZ Michael | 74 |
49 | DAL-CIN Matteo | 77 |
54 | ZIMMER Matt | 68 |
63 | RITCHIE Samuel | 75 |