Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Hall
1
52 kgBergen
2
64 kgThomas
3
58 kgPeñuela
4
53 kgPitel
5
52 kgDygert
6
66 kgLuebke
8
54 kgNewsom
9
59 kgPowless
10
59 kgBanks
12
62 kgBlais
13
53 kgGanzar
14
59 kgValente
16
73 kgFranz
19
52 kgWilliams
20
66 kgTeddergreen
23
51 kgBaur
44
56 kgMullens
46
57 kgRyan
54
59 kg
1
52 kgBergen
2
64 kgThomas
3
58 kgPeñuela
4
53 kgPitel
5
52 kgDygert
6
66 kgLuebke
8
54 kgNewsom
9
59 kgPowless
10
59 kgBanks
12
62 kgBlais
13
53 kgGanzar
14
59 kgValente
16
73 kgFranz
19
52 kgWilliams
20
66 kgTeddergreen
23
51 kgBaur
44
56 kgMullens
46
57 kgRyan
54
59 kg
Weight (KG) →
Result →
73
51
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | HALL Katie | 52 |
2 | BERGEN Sara | 64 |
3 | THOMAS Leah | 58 |
4 | PEÑUELA Diana | 53 |
5 | PITEL Edwige | 52 |
6 | DYGERT Chloé | 66 |
8 | LUEBKE Jennifer | 54 |
9 | NEWSOM Emily | 59 |
10 | POWLESS Shayna | 59 |
12 | BANKS Elizabeth | 62 |
13 | BLAIS Marie-Soleil | 53 |
14 | GANZAR Leigh Ann | 59 |
16 | VALENTE Jennifer | 73 |
19 | FRANZ Heidi | 52 |
20 | WILLIAMS Lily | 66 |
23 | TEDDERGREEN Starla | 51 |
44 | BAUR Caroline | 56 |
46 | MULLENS Peta | 57 |
54 | RYAN Kendall | 59 |