Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Peñuela
1
53 kgLuebke
2
54 kgPitel
3
52 kgHall
4
52 kgBergen
5
64 kgPowless
8
59 kgThomas
9
58 kgNewsom
12
59 kgBanks
13
62 kgGanzar
17
59 kgDygert
18
66 kgBlais
20
53 kgValente
26
73 kgTeddergreen
29
51 kgFranz
33
52 kgWilliams
39
66 kgBaur
52
56 kgMullens
61
57 kgRyan
71
59 kgBaril
79
56 kg
1
53 kgLuebke
2
54 kgPitel
3
52 kgHall
4
52 kgBergen
5
64 kgPowless
8
59 kgThomas
9
58 kgNewsom
12
59 kgBanks
13
62 kgGanzar
17
59 kgDygert
18
66 kgBlais
20
53 kgValente
26
73 kgTeddergreen
29
51 kgFranz
33
52 kgWilliams
39
66 kgBaur
52
56 kgMullens
61
57 kgRyan
71
59 kgBaril
79
56 kg
Weight (KG) →
Result →
73
51
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | PEÑUELA Diana | 53 |
2 | LUEBKE Jennifer | 54 |
3 | PITEL Edwige | 52 |
4 | HALL Katie | 52 |
5 | BERGEN Sara | 64 |
8 | POWLESS Shayna | 59 |
9 | THOMAS Leah | 58 |
12 | NEWSOM Emily | 59 |
13 | BANKS Elizabeth | 62 |
17 | GANZAR Leigh Ann | 59 |
18 | DYGERT Chloé | 66 |
20 | BLAIS Marie-Soleil | 53 |
26 | VALENTE Jennifer | 73 |
29 | TEDDERGREEN Starla | 51 |
33 | FRANZ Heidi | 52 |
39 | WILLIAMS Lily | 66 |
52 | BAUR Caroline | 56 |
61 | MULLENS Peta | 57 |
71 | RYAN Kendall | 59 |
79 | BARIL Olivia | 56 |