Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bergen
1
64 kgDygert
2
66 kgThomas
3
58 kgHall
6
52 kgPeñuela
7
53 kgBlais
9
53 kgPitel
10
52 kgGanzar
11
59 kgLuebke
13
54 kgValente
14
73 kgNewsom
17
59 kgBaur
22
56 kgTeddergreen
25
51 kgWilliams
28
66 kgBanks
30
62 kgFranz
31
52 kgPowless
33
59 kgRyan
51
59 kgBaril
59
56 kgMullens
65
57 kg
1
64 kgDygert
2
66 kgThomas
3
58 kgHall
6
52 kgPeñuela
7
53 kgBlais
9
53 kgPitel
10
52 kgGanzar
11
59 kgLuebke
13
54 kgValente
14
73 kgNewsom
17
59 kgBaur
22
56 kgTeddergreen
25
51 kgWilliams
28
66 kgBanks
30
62 kgFranz
31
52 kgPowless
33
59 kgRyan
51
59 kgBaril
59
56 kgMullens
65
57 kg
Weight (KG) →
Result →
73
51
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | BERGEN Sara | 64 |
2 | DYGERT Chloé | 66 |
3 | THOMAS Leah | 58 |
6 | HALL Katie | 52 |
7 | PEÑUELA Diana | 53 |
9 | BLAIS Marie-Soleil | 53 |
10 | PITEL Edwige | 52 |
11 | GANZAR Leigh Ann | 59 |
13 | LUEBKE Jennifer | 54 |
14 | VALENTE Jennifer | 73 |
17 | NEWSOM Emily | 59 |
22 | BAUR Caroline | 56 |
25 | TEDDERGREEN Starla | 51 |
28 | WILLIAMS Lily | 66 |
30 | BANKS Elizabeth | 62 |
31 | FRANZ Heidi | 52 |
33 | POWLESS Shayna | 59 |
51 | RYAN Kendall | 59 |
59 | BARIL Olivia | 56 |
65 | MULLENS Peta | 57 |