Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Hall
1
52 kgBergen
2
64 kgThomas
4
58 kgFranz
5
52 kgDygert
6
66 kgBlais
8
53 kgBanks
9
62 kgPitel
10
52 kgPeñuela
12
53 kgNewsom
13
59 kgWilliams
14
66 kgGanzar
15
59 kgPowless
17
59 kgValente
18
73 kgLuebke
22
54 kgTeddergreen
30
51 kgBaur
44
56 kgBaril
47
56 kgMullens
65
57 kgRyan
77
59 kg
1
52 kgBergen
2
64 kgThomas
4
58 kgFranz
5
52 kgDygert
6
66 kgBlais
8
53 kgBanks
9
62 kgPitel
10
52 kgPeñuela
12
53 kgNewsom
13
59 kgWilliams
14
66 kgGanzar
15
59 kgPowless
17
59 kgValente
18
73 kgLuebke
22
54 kgTeddergreen
30
51 kgBaur
44
56 kgBaril
47
56 kgMullens
65
57 kgRyan
77
59 kg
Weight (KG) →
Result →
73
51
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | HALL Katie | 52 |
2 | BERGEN Sara | 64 |
4 | THOMAS Leah | 58 |
5 | FRANZ Heidi | 52 |
6 | DYGERT Chloé | 66 |
8 | BLAIS Marie-Soleil | 53 |
9 | BANKS Elizabeth | 62 |
10 | PITEL Edwige | 52 |
12 | PEÑUELA Diana | 53 |
13 | NEWSOM Emily | 59 |
14 | WILLIAMS Lily | 66 |
15 | GANZAR Leigh Ann | 59 |
17 | POWLESS Shayna | 59 |
18 | VALENTE Jennifer | 73 |
22 | LUEBKE Jennifer | 54 |
30 | TEDDERGREEN Starla | 51 |
44 | BAUR Caroline | 56 |
47 | BARIL Olivia | 56 |
65 | MULLENS Peta | 57 |
77 | RYAN Kendall | 59 |