Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Dygert
1
66 kgHall
2
52 kgBergen
3
64 kgValente
5
73 kgWilliams
6
66 kgPeñuela
7
53 kgThomas
8
58 kgGanzar
9
59 kgBlais
10
53 kgPitel
13
52 kgPowless
14
59 kgNewsom
16
59 kgBanks
17
62 kgLuebke
22
54 kgMullens
25
57 kgFranz
27
52 kgTeddergreen
28
51 kgBaur
29
56 kgRyan
44
59 kg
1
66 kgHall
2
52 kgBergen
3
64 kgValente
5
73 kgWilliams
6
66 kgPeñuela
7
53 kgThomas
8
58 kgGanzar
9
59 kgBlais
10
53 kgPitel
13
52 kgPowless
14
59 kgNewsom
16
59 kgBanks
17
62 kgLuebke
22
54 kgMullens
25
57 kgFranz
27
52 kgTeddergreen
28
51 kgBaur
29
56 kgRyan
44
59 kg
Weight (KG) →
Result →
73
51
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | DYGERT Chloé | 66 |
2 | HALL Katie | 52 |
3 | BERGEN Sara | 64 |
5 | VALENTE Jennifer | 73 |
6 | WILLIAMS Lily | 66 |
7 | PEÑUELA Diana | 53 |
8 | THOMAS Leah | 58 |
9 | GANZAR Leigh Ann | 59 |
10 | BLAIS Marie-Soleil | 53 |
13 | PITEL Edwige | 52 |
14 | POWLESS Shayna | 59 |
16 | NEWSOM Emily | 59 |
17 | BANKS Elizabeth | 62 |
22 | LUEBKE Jennifer | 54 |
25 | MULLENS Peta | 57 |
27 | FRANZ Heidi | 52 |
28 | TEDDERGREEN Starla | 51 |
29 | BAUR Caroline | 56 |
44 | RYAN Kendall | 59 |