Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Williams
4
66 kgBergen
9
64 kgBaril
15
56 kgPrieto
18
54 kgNewsom
21
59 kgGanzar
23
59 kgTeddergreen
27
51 kgDygert
30
66 kgThorvilson
32
60 kgDoebel-Hickok
33
51 kgDuehring
36
54 kgRamirez
39
54 kgGarcía
50
68 kgLuebke
55
54 kgPoidevin
58
56 kgSanabria
61
51 kgBeveridge
67
62 kg
4
66 kgBergen
9
64 kgBaril
15
56 kgPrieto
18
54 kgNewsom
21
59 kgGanzar
23
59 kgTeddergreen
27
51 kgDygert
30
66 kgThorvilson
32
60 kgDoebel-Hickok
33
51 kgDuehring
36
54 kgRamirez
39
54 kgGarcía
50
68 kgLuebke
55
54 kgPoidevin
58
56 kgSanabria
61
51 kgBeveridge
67
62 kg
Weight (KG) →
Result →
68
51
4
67
# | Rider | Weight (KG) |
---|---|---|
4 | WILLIAMS Lily | 66 |
9 | BERGEN Sara | 64 |
15 | BARIL Olivia | 56 |
18 | PRIETO Marcela Elizabeth | 54 |
21 | NEWSOM Emily | 59 |
23 | GANZAR Leigh Ann | 59 |
27 | TEDDERGREEN Starla | 51 |
30 | DYGERT Chloé | 66 |
32 | THORVILSON Leah | 60 |
33 | DOEBEL-HICKOK Krista | 51 |
36 | DUEHRING Jasmin | 54 |
39 | RAMIREZ Andrea | 54 |
50 | GARCÍA Danielys del Valle | 68 |
55 | LUEBKE Jennifer | 54 |
58 | POIDEVIN Sara | 56 |
61 | SANABRIA Ana Cristina | 51 |
67 | BEVERIDGE Allison | 62 |