Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Fretin
2
70 kgKooij
4
72 kgBerckmoes
8
61 kgVangheluwe
11
79 kgBoven
12
62 kgTene
15
72 kgRollée
16
73 kgVandenbulcke
19
61 kgAndersons
22
77 kgVermoote
24
73 kgBerglund
25
72 kgLootens
38
74 kgMesserschmidt
53
68 kgHorsthemke
56
68 kgGloag
59
60 kgPortsmouth
62
70 kgBosley
64
68 kgWyseure
67
70 kgChromy
77
63 kgLuijten
79
79 kgHuys
81
77 kgKrijnsen
83
73 kgMills-Keeling
85
60 kg
2
70 kgKooij
4
72 kgBerckmoes
8
61 kgVangheluwe
11
79 kgBoven
12
62 kgTene
15
72 kgRollée
16
73 kgVandenbulcke
19
61 kgAndersons
22
77 kgVermoote
24
73 kgBerglund
25
72 kgLootens
38
74 kgMesserschmidt
53
68 kgHorsthemke
56
68 kgGloag
59
60 kgPortsmouth
62
70 kgBosley
64
68 kgWyseure
67
70 kgChromy
77
63 kgLuijten
79
79 kgHuys
81
77 kgKrijnsen
83
73 kgMills-Keeling
85
60 kg
Weight (KG) →
Result →
79
60
2
85
# | Rider | Weight (KG) |
---|---|---|
2 | FRETIN Milan | 70 |
4 | KOOIJ Olav | 72 |
8 | BERCKMOES Jenno | 61 |
11 | VANGHELUWE Warre | 79 |
12 | BOVEN Lars | 62 |
15 | TENE Rotem | 72 |
16 | ROLLÉE Thibault | 73 |
19 | VANDENBULCKE Alex | 61 |
22 | ANDERSONS Roberts | 77 |
24 | VERMOOTE Jelle | 73 |
25 | BERGLUND Kalle | 72 |
38 | LOOTENS Gust | 74 |
53 | MESSERSCHMIDT Jonas Fabian | 68 |
56 | HORSTHEMKE Erik | 68 |
59 | GLOAG Thomas | 60 |
62 | PORTSMOUTH Tom | 70 |
64 | BOSLEY Alexander | 68 |
67 | WYSEURE Joran | 70 |
77 | CHROMY Kyle | 63 |
79 | LUIJTEN Noel | 79 |
81 | HUYS Branko | 77 |
83 | KRIJNSEN Jelte | 73 |
85 | MILLS-KEELING George | 60 |