Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Van Hyfte
1
70 kgVestøl
2
85 kgTessier
3
70 kgvan Dijk
4
74 kgOmloop
5
78 kgVierhouten
6
71 kgKoerts
7
78 kgFlammang
8
80 kgGuyton
10
74 kgVan Lancker
11
67 kgKashechkin
13
70 kgWilson
15
72 kgGardeyn
17
75 kgBak
18
76 kgVan Impe
19
75 kgPérez
23
68 kgVan de Wouwer
24
66 kgMifune
26
70 kgMarichal
28
72 kg
1
70 kgVestøl
2
85 kgTessier
3
70 kgvan Dijk
4
74 kgOmloop
5
78 kgVierhouten
6
71 kgKoerts
7
78 kgFlammang
8
80 kgGuyton
10
74 kgVan Lancker
11
67 kgKashechkin
13
70 kgWilson
15
72 kgGardeyn
17
75 kgBak
18
76 kgVan Impe
19
75 kgPérez
23
68 kgVan de Wouwer
24
66 kgMifune
26
70 kgMarichal
28
72 kg
Weight (KG) →
Result →
85
66
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | VAN HYFTE Paul | 70 |
2 | VESTØL Bjørnar | 85 |
3 | TESSIER Jean-Michel | 70 |
4 | VAN DIJK Stefan | 74 |
5 | OMLOOP Geert | 78 |
6 | VIERHOUTEN Aart | 71 |
7 | KOERTS Jans | 78 |
8 | FLAMMANG Tom | 80 |
10 | GUYTON Scott | 74 |
11 | VAN LANCKER Kurt | 67 |
13 | KASHECHKIN Andrey | 70 |
15 | WILSON Matthew | 72 |
17 | GARDEYN Gorik | 75 |
18 | BAK Lars Ytting | 76 |
19 | VAN IMPE Kevin | 75 |
23 | PÉREZ Marlon Alirio | 68 |
24 | VAN DE WOUWER Kurt | 66 |
26 | MIFUNE Masahiko | 70 |
28 | MARICHAL Thierry | 72 |