Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 31
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Van Avermaet
1
74 kgMaes
3
78 kgSteurs
5
77 kgCammaerts
12
74 kgJacobs
23
68 kgVandenbergh
24
86 kgCozza
28
70 kgDelfosse
29
73 kgDevenyns
31
65 kgMeersman
32
63 kgVantomme
35
63 kgMurphy
38
81 kgBaugnies
40
69 kgPardini
48
68 kgvan Genechten
49
67 kgCappelle
50
76 kgCalleeuw
62
71 kgVanmuysen
73
75 kgVan Melsen
75
77 kgCordeel
79
80 kg
1
74 kgMaes
3
78 kgSteurs
5
77 kgCammaerts
12
74 kgJacobs
23
68 kgVandenbergh
24
86 kgCozza
28
70 kgDelfosse
29
73 kgDevenyns
31
65 kgMeersman
32
63 kgVantomme
35
63 kgMurphy
38
81 kgBaugnies
40
69 kgPardini
48
68 kgvan Genechten
49
67 kgCappelle
50
76 kgCalleeuw
62
71 kgVanmuysen
73
75 kgVan Melsen
75
77 kgCordeel
79
80 kg
Weight (KG) →
Result →
86
63
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AVERMAET Greg | 74 |
3 | MAES Nikolas | 78 |
5 | STEURS Geert | 77 |
12 | CAMMAERTS Edwig | 74 |
23 | JACOBS Pieter | 68 |
24 | VANDENBERGH Stijn | 86 |
28 | COZZA Steven | 70 |
29 | DELFOSSE Sébastien | 73 |
31 | DEVENYNS Dries | 65 |
32 | MEERSMAN Gianni | 63 |
35 | VANTOMME Maxime | 63 |
38 | MURPHY John | 81 |
40 | BAUGNIES Jérôme | 69 |
48 | PARDINI Olivier | 68 |
49 | VAN GENECHTEN Jonas | 67 |
50 | CAPPELLE Dieter | 76 |
62 | CALLEEUW Joeri | 71 |
73 | VANMUYSEN Roel | 75 |
75 | VAN MELSEN Kévin | 77 |
79 | CORDEEL Sander | 80 |