Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 33
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Lodewyck
3
70 kgDockx
5
64 kgBlythe
7
68 kgJoseph
8
67 kgSalomein
10
80 kgPlanckaert
11
65 kgAriesen
14
70 kgDhaene
22
73 kgSerry
34
66 kgBruyneel
43
85 kgDebusschere
44
77 kgVergote
58
74 kgGhyselinck
63
74 kgWallays
64
77 kgDron
68
72 kgVermote
69
74 kgJuul-Jensen
73
73 kgGuldhammer
81
66 kgEijssen
92
60 kgGmelich Meijling
94
77 kgJodts
103
74 kgStassen
124
66 kg
3
70 kgDockx
5
64 kgBlythe
7
68 kgJoseph
8
67 kgSalomein
10
80 kgPlanckaert
11
65 kgAriesen
14
70 kgDhaene
22
73 kgSerry
34
66 kgBruyneel
43
85 kgDebusschere
44
77 kgVergote
58
74 kgGhyselinck
63
74 kgWallays
64
77 kgDron
68
72 kgVermote
69
74 kgJuul-Jensen
73
73 kgGuldhammer
81
66 kgEijssen
92
60 kgGmelich Meijling
94
77 kgJodts
103
74 kgStassen
124
66 kg
Weight (KG) →
Result →
85
60
3
124
| # | Rider | Weight (KG) |
|---|---|---|
| 3 | LODEWYCK Klaas | 70 |
| 5 | DOCKX Gert | 64 |
| 7 | BLYTHE Adam | 68 |
| 8 | JOSEPH Gregory | 67 |
| 10 | SALOMEIN Jarl | 80 |
| 11 | PLANCKAERT Baptiste | 65 |
| 14 | ARIESEN Johim | 70 |
| 22 | DHAENE Brecht | 73 |
| 34 | SERRY Pieter | 66 |
| 43 | BRUYNEEL Giel | 85 |
| 44 | DEBUSSCHERE Jens | 77 |
| 58 | VERGOTE Thomas | 74 |
| 63 | GHYSELINCK Jan | 74 |
| 64 | WALLAYS Jelle | 77 |
| 68 | DRON Boris | 72 |
| 69 | VERMOTE Julien | 74 |
| 73 | JUUL-JENSEN Christopher | 73 |
| 81 | GULDHAMMER Rasmus | 66 |
| 92 | EIJSSEN Yannick | 60 |
| 94 | GMELICH MEIJLING Jarno | 77 |
| 103 | JODTS Sven | 74 |
| 124 | STASSEN Julien | 66 |