Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 96
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Guldhammer
6
66 kgDockx
7
64 kgLodewyck
8
70 kgDron
10
72 kgDebusschere
11
77 kgDhaene
12
73 kgGhyselinck
16
74 kgGmelich Meijling
19
77 kgEijssen
29
60 kgSalomein
30
80 kgVermote
37
74 kgJuul-Jensen
38
73 kgPlanckaert
39
65 kgJoseph
40
67 kgBruyneel
43
85 kgVergote
44
74 kgWallays
46
77 kgJodts
53
74 kgBlythe
69
68 kgSerry
77
66 kgAriesen
83
70 kgStassen
124
66 kg
6
66 kgDockx
7
64 kgLodewyck
8
70 kgDron
10
72 kgDebusschere
11
77 kgDhaene
12
73 kgGhyselinck
16
74 kgGmelich Meijling
19
77 kgEijssen
29
60 kgSalomein
30
80 kgVermote
37
74 kgJuul-Jensen
38
73 kgPlanckaert
39
65 kgJoseph
40
67 kgBruyneel
43
85 kgVergote
44
74 kgWallays
46
77 kgJodts
53
74 kgBlythe
69
68 kgSerry
77
66 kgAriesen
83
70 kgStassen
124
66 kg
Weight (KG) →
Result →
85
60
6
124
# | Rider | Weight (KG) |
---|---|---|
6 | GULDHAMMER Rasmus | 66 |
7 | DOCKX Gert | 64 |
8 | LODEWYCK Klaas | 70 |
10 | DRON Boris | 72 |
11 | DEBUSSCHERE Jens | 77 |
12 | DHAENE Brecht | 73 |
16 | GHYSELINCK Jan | 74 |
19 | GMELICH MEIJLING Jarno | 77 |
29 | EIJSSEN Yannick | 60 |
30 | SALOMEIN Jarl | 80 |
37 | VERMOTE Julien | 74 |
38 | JUUL-JENSEN Christopher | 73 |
39 | PLANCKAERT Baptiste | 65 |
40 | JOSEPH Gregory | 67 |
43 | BRUYNEEL Giel | 85 |
44 | VERGOTE Thomas | 74 |
46 | WALLAYS Jelle | 77 |
53 | JODTS Sven | 74 |
69 | BLYTHE Adam | 68 |
77 | SERRY Pieter | 66 |
83 | ARIESEN Johim | 70 |
124 | STASSEN Julien | 66 |