Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.8 * weight - 171
This means that on average for every extra kilogram weight a rider loses 2.8 positions in the result.
Blythe
2
68 kgJoseph
5
67 kgLodewyck
9
70 kgDockx
10
64 kgPlanckaert
11
65 kgDhaene
17
73 kgEijssen
18
60 kgGuldhammer
19
66 kgDron
20
72 kgGhyselinck
21
74 kgVermote
23
74 kgSerry
24
66 kgWallays
26
77 kgAriesen
31
70 kgBruyneel
51
85 kgJuul-Jensen
59
73 kgGmelich Meijling
67
77 kgSalomein
74
80 kgDebusschere
82
77 kgJodts
83
74 kg
2
68 kgJoseph
5
67 kgLodewyck
9
70 kgDockx
10
64 kgPlanckaert
11
65 kgDhaene
17
73 kgEijssen
18
60 kgGuldhammer
19
66 kgDron
20
72 kgGhyselinck
21
74 kgVermote
23
74 kgSerry
24
66 kgWallays
26
77 kgAriesen
31
70 kgBruyneel
51
85 kgJuul-Jensen
59
73 kgGmelich Meijling
67
77 kgSalomein
74
80 kgDebusschere
82
77 kgJodts
83
74 kg
Weight (KG) →
Result →
85
60
2
83
# | Rider | Weight (KG) |
---|---|---|
2 | BLYTHE Adam | 68 |
5 | JOSEPH Gregory | 67 |
9 | LODEWYCK Klaas | 70 |
10 | DOCKX Gert | 64 |
11 | PLANCKAERT Baptiste | 65 |
17 | DHAENE Brecht | 73 |
18 | EIJSSEN Yannick | 60 |
19 | GULDHAMMER Rasmus | 66 |
20 | DRON Boris | 72 |
21 | GHYSELINCK Jan | 74 |
23 | VERMOTE Julien | 74 |
24 | SERRY Pieter | 66 |
26 | WALLAYS Jelle | 77 |
31 | ARIESEN Johim | 70 |
51 | BRUYNEEL Giel | 85 |
59 | JUUL-JENSEN Christopher | 73 |
67 | GMELICH MEIJLING Jarno | 77 |
74 | SALOMEIN Jarl | 80 |
82 | DEBUSSCHERE Jens | 77 |
83 | JODTS Sven | 74 |