Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 110
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Vermote
1
74 kgKennaugh
2
66 kgWauters
3
66 kgRowsell
6
66 kgJuul-Jensen
8
73 kgWallays
13
77 kgMcNally
17
72 kgFenn
18
79 kgSalomein
20
80 kgDebusschere
21
77 kgLietaer
26
70 kgVermote
27
74 kgRowe
33
72 kgVerhelst
34
71 kgPozdnyakov
38
67 kgPremont
53
69 kgGuldhammer
66
66 kgDeclercq
82
78 kgDe Troyer
92
72 kgVanoverberghe
93
65 kgThill
109
73 kgHelven
138
74 kgBlythe
145
68 kg
1
74 kgKennaugh
2
66 kgWauters
3
66 kgRowsell
6
66 kgJuul-Jensen
8
73 kgWallays
13
77 kgMcNally
17
72 kgFenn
18
79 kgSalomein
20
80 kgDebusschere
21
77 kgLietaer
26
70 kgVermote
27
74 kgRowe
33
72 kgVerhelst
34
71 kgPozdnyakov
38
67 kgPremont
53
69 kgGuldhammer
66
66 kgDeclercq
82
78 kgDe Troyer
92
72 kgVanoverberghe
93
65 kgThill
109
73 kgHelven
138
74 kgBlythe
145
68 kg
Weight (KG) →
Result →
80
65
1
145
# | Rider | Weight (KG) |
---|---|---|
1 | VERMOTE Julien | 74 |
2 | KENNAUGH Peter | 66 |
3 | WAUTERS Willem | 66 |
6 | ROWSELL Erick | 66 |
8 | JUUL-JENSEN Christopher | 73 |
13 | WALLAYS Jelle | 77 |
17 | MCNALLY Mark | 72 |
18 | FENN Andrew | 79 |
20 | SALOMEIN Jarl | 80 |
21 | DEBUSSCHERE Jens | 77 |
26 | LIETAER Eliot | 70 |
27 | VERMOTE Alphonse | 74 |
33 | ROWE Luke | 72 |
34 | VERHELST Louis | 71 |
38 | POZDNYAKOV Kirill | 67 |
53 | PREMONT Christophe | 69 |
66 | GULDHAMMER Rasmus | 66 |
82 | DECLERCQ Tim | 78 |
92 | DE TROYER Tim | 72 |
93 | VANOVERBERGHE Arthur | 65 |
109 | THILL Tom | 73 |
138 | HELVEN Sander | 74 |
145 | BLYTHE Adam | 68 |