Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Kennaugh
2
66 kgDebusschere
3
77 kgVanoverberghe
5
65 kgRowsell
7
66 kgGuldhammer
8
66 kgWallays
9
77 kgSalomein
10
80 kgMcNally
14
72 kgFenn
15
79 kgPozdnyakov
24
67 kgHelven
27
74 kgJuul-Jensen
28
73 kgRowe
30
72 kgVermote
31
74 kgLietaer
35
70 kgWauters
40
66 kgPremont
42
69 kgBlythe
43
68 kgDeclercq
53
78 kgVerhelst
72
71 kgDe Troyer
100
72 kgVermote
101
74 kgThill
119
73 kg
2
66 kgDebusschere
3
77 kgVanoverberghe
5
65 kgRowsell
7
66 kgGuldhammer
8
66 kgWallays
9
77 kgSalomein
10
80 kgMcNally
14
72 kgFenn
15
79 kgPozdnyakov
24
67 kgHelven
27
74 kgJuul-Jensen
28
73 kgRowe
30
72 kgVermote
31
74 kgLietaer
35
70 kgWauters
40
66 kgPremont
42
69 kgBlythe
43
68 kgDeclercq
53
78 kgVerhelst
72
71 kgDe Troyer
100
72 kgVermote
101
74 kgThill
119
73 kg
Weight (KG) →
Result →
80
65
2
119
# | Rider | Weight (KG) |
---|---|---|
2 | KENNAUGH Peter | 66 |
3 | DEBUSSCHERE Jens | 77 |
5 | VANOVERBERGHE Arthur | 65 |
7 | ROWSELL Erick | 66 |
8 | GULDHAMMER Rasmus | 66 |
9 | WALLAYS Jelle | 77 |
10 | SALOMEIN Jarl | 80 |
14 | MCNALLY Mark | 72 |
15 | FENN Andrew | 79 |
24 | POZDNYAKOV Kirill | 67 |
27 | HELVEN Sander | 74 |
28 | JUUL-JENSEN Christopher | 73 |
30 | ROWE Luke | 72 |
31 | VERMOTE Julien | 74 |
35 | LIETAER Eliot | 70 |
40 | WAUTERS Willem | 66 |
42 | PREMONT Christophe | 69 |
43 | BLYTHE Adam | 68 |
53 | DECLERCQ Tim | 78 |
72 | VERHELST Louis | 71 |
100 | DE TROYER Tim | 72 |
101 | VERMOTE Alphonse | 74 |
119 | THILL Tom | 73 |