Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 115
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Braet
1
68 kgBrown
2
68 kgVan der Beken
4
66 kgLootens
9
74 kgVandevelde
10
69 kgBomboi
13
72 kgBerckmoes
14
61 kgClaeys
20
72 kgHayter
21
66 kgStippelmans
23
76 kgDe Decker
26
73 kgVangheluwe
30
79 kgVan Wilder
31
64 kgVan de Wynkele
44
75 kgSzékely
59
75 kgHuys
62
77 kg
1
68 kgBrown
2
68 kgVan der Beken
4
66 kgLootens
9
74 kgVandevelde
10
69 kgBomboi
13
72 kgBerckmoes
14
61 kgClaeys
20
72 kgHayter
21
66 kgStippelmans
23
76 kgDe Decker
26
73 kgVangheluwe
30
79 kgVan Wilder
31
64 kgVan de Wynkele
44
75 kgSzékely
59
75 kgHuys
62
77 kg
Weight (KG) →
Result →
79
61
1
62
# | Rider | Weight (KG) |
---|---|---|
1 | BRAET Vito | 68 |
2 | BROWN Jim | 68 |
4 | VAN DER BEKEN Aaron | 66 |
9 | LOOTENS Gust | 74 |
10 | VANDEVELDE Yentl | 69 |
13 | BOMBOI Davide | 72 |
14 | BERCKMOES Jenno | 61 |
20 | CLAEYS Arno | 72 |
21 | HAYTER Leo | 66 |
23 | STIPPELMANS Toon | 76 |
26 | DE DECKER Tijl | 73 |
30 | VANGHELUWE Warre | 79 |
31 | VAN WILDER Ilan | 64 |
44 | VAN DE WYNKELE Lorenz | 75 |
59 | SZÉKELY Nathan | 75 |
62 | HUYS Branko | 77 |