Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Sheffield
1
73 kgPidcock
3
57 kgDe Lie
5
78 kgDebruyne
6
66 kgRootkin-Gray
7
67 kgDeweirdt
8
69 kgVan Ryckeghem
9
80 kgReinderink
10
67 kgRiccitello
11
55 kgLadang
12
70 kgde Bruin
14
64 kgGelders
20
66 kgVogels
21
77 kgde Rijk
24
73 kgTheiler
27
75 kgKolschefsky
28
63 kgVerbeeck
29
71 kgClaus
31
65 kgFrątczak
32
70 kgWenzel
34
68 kgVercouillie
37
66 kg
1
73 kgPidcock
3
57 kgDe Lie
5
78 kgDebruyne
6
66 kgRootkin-Gray
7
67 kgDeweirdt
8
69 kgVan Ryckeghem
9
80 kgReinderink
10
67 kgRiccitello
11
55 kgLadang
12
70 kgde Bruin
14
64 kgGelders
20
66 kgVogels
21
77 kgde Rijk
24
73 kgTheiler
27
75 kgKolschefsky
28
63 kgVerbeeck
29
71 kgClaus
31
65 kgFrątczak
32
70 kgWenzel
34
68 kgVercouillie
37
66 kg
Weight (KG) →
Result →
80
55
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | SHEFFIELD Magnus | 73 |
3 | PIDCOCK Joseph | 57 |
5 | DE LIE Arnaud | 78 |
6 | DEBRUYNE Ramses | 66 |
7 | ROOTKIN-GRAY Jack | 67 |
8 | DEWEIRDT Siebe | 69 |
9 | VAN RYCKEGHEM Lars | 80 |
10 | REINDERINK Pepijn | 67 |
11 | RICCITELLO Matthew | 55 |
12 | LADANG Miguel | 70 |
14 | DE BRUIN Tjalle | 64 |
20 | GELDERS Gil | 66 |
21 | VOGELS Aaron | 77 |
24 | DE RIJK Sim | 73 |
27 | THEILER Ole | 75 |
28 | KOLSCHEFSKY Tim-Oliver | 63 |
29 | VERBEECK Dag | 71 |
31 | CLAUS Benoît | 65 |
32 | FRĄTCZAK Radosław | 70 |
34 | WENZEL Mats | 68 |
37 | VERCOUILLIE Victor | 66 |